- Browse by Subject
Browsing by Subject "Asthma"
Now showing 1 - 10 of 52
Results Per Page
Sort Options
Item 4405 Chronic Disease in Indiana – Using a Community Health Matrix to Determine Health Factors for Indiana Counties(Cambridge University Press, 2020-07-29) Wiehe, Sarah; Zych, Aaron; Hinshaw, Karen; Alley, Ann; Claxton, Gina; Savaiano, Dennis; Pediatrics, School of MedicineOBJECTIVES/GOALS: The goal of this project was to inform four chronic disease initiatives, working together on the team Connections IN Health, and counties in Indiana on certain areas of need to assist them in collaborative planning. The chronic diseases focused on include diabetes, cardiovascular disease, stroke, asthma, lung cancer and obesity. METHODS/STUDY POPULATION: Chronic disease health outcomes and social determinants of health indicators were identified in all 92 Indiana counties. Counties were compared by composite z scores in a matrix to determine the 23 counties with the poorest health statistics for diabetes, cardiovascular disease, stroke, asthma, lung cancer, obesity and life expectancy. Qualitative data were used to identify local health coalitions that have the capacity and desire to work with Connections IN Health to improve these health outcomes. With input from partners, the counties were narrowed to 10 that were identified as those with the most need in the specific areas of chronic disease that the initiatives focus on. The team will begin listening sessions with two of these counties to identify strategic partnerships, funding sources, and evidence-based programs to address community-identified health priorities. RESULTS/ANTICIPATED RESULTS: The 23 counties with the poorest health outcomes related to chronic disease and factors were Blackford, Clark, Clay, Fayette, Fulton, Grant, Greene, Howard, Jay, Jennings, Knox, Lake, LaPorte, Madison, Marion, Pike, Scott, Starke, Sullivan, Vanderburgh, Vermillion, Vigo, and Washington. There was significant overlap in low z score rankings for individual health and social determinants of health measures among these 23 counties. The following 10 counties were selected for focus in the next five years based on partner input: Blackford, Clay, Grant, Jennings, Lake, Madison, Marion, Starke, Vermillion, and Washington. The Connections IN Health team has initiated listening sessions in Grant and Vermillion Counties (with data for presentation at the ACTS meeting). DISCUSSION/SIGNIFICANCE OF IMPACT: This mixed methods approach using existing data and partner input on county capacity/readiness directed Connections IN Health to counties with the most need for coalition efforts. Engagement within each county will inform next steps (e.g., capacity building, partnership development, applications for funding, implementation of evidence-based programs) and specific health focus area(s).Item A Between-Sex Comparison of the Genomic Architecture of Asthma(American Thoracic Society, 2023) Zein, Joe G.; Bazeley, Peter; Meyers, Deborah; Bleecker, Eugene; Gaston, Benjamin; Hu, Bo; Attaway, Amy; Ortega, Victor; Pediatrics, School of MedicineItem Airway Thiol-NO Adducts as Determinants of Exhaled NO(MDPI, 2021-09-26) Pophal, Megan; Grimmett, Zachary W.; Chu, Clara; Margevicius, Seunghee; Raffay, Thomas; Ross, Kristie; Jafri, Anjum; Giddings, Olivia; Stamler, Jonathan S.; Gaston, Benjamin; Reynolds, James D.; Pediatrics, School of MedicineThiol-NO adducts such as S-nitrosoglutathione (GSNO) are endogenous bronchodilators in human airways. Decreased airway S-nitrosothiol concentrations are associated with asthma. Nitric oxide (NO), a breakdown product of GSNO, is measured in exhaled breath as a biomarker in asthma; an elevated fraction of expired NO (FENO) is associated with asthmatic airway inflammation. We hypothesized that FENO could reflect airway S-nitrosothiol concentrations. To test this hypothesis, we first studied the relationship between mixed expired NO and airway S-nitrosothiols in patients endotracheally intubated for respiratory failure. The inverse (Lineweaver-Burke type) relationship suggested that expired NO could reflect the rate of pulmonary S-nitrosothiol breakdown. We thus studied NO evolution from the lungs of mice (GSNO reductase -/-) unable reductively to catabolize GSNO. More NO was produced from GSNO in the -/- compared to wild type lungs. Finally, we formally tested the hypothesis that airway GSNO increases FENO using an inhalational challenge model in normal human subjects. FENO increased in all subjects tested, with a median t1/2 of 32.0 min. Taken together, these data demonstrate that FENO reports, at least in part, GSNO breakdown in the lungs. Unlike GSNO, NO is not present in the lungs in physiologically relevant concentrations. However, FENO following a GSNO challenge could be a non-invasive test for airway GSNO catabolism.Item Allergic airway recall responses require IL-9 from resident memory CD4+ T cells(American Association for the Advancement of Science, 2022) Ulrich, Benjamin J.; Kharwadkar, Rakshin; Chu, Michelle; Pajulas, Abigail; Muralidharan, Charanya; Koh, Byunghee; Fu, Yongyao; Gao, Hongyu; Hayes, Tristan A.; Zhou, Hong-Ming; Goplen, Nick P.; Nelson, Andrew S.; Liu, Yunlong; Linnemann, Amelia K.; Turner, Matthew J.; Licona-Limón, Paula; Flavell, Richard A.; Sun, Jie; Kaplan, Mark H.; Microbiology and Immunology, School of MedicineAsthma is a chronic inflammatory lung disease with intermittent flares predominately mediated through memory T cells. Yet, the identity of long-term memory cells that mediate allergic recall responses is not well defined. In this report, using a mouse model of chronic allergen exposure followed by an allergen-free rest period, we characterized a subpopulation of CD4+ T cells that secreted IL-9 as an obligate effector cytokine. IL-9-secreting cells had a resident memory T cell phenotype, and blocking IL-9 during a recall challenge or deleting IL-9 from T cells significantly diminished airway inflammation and airway hyperreactivity. T cells secreted IL-9 in an allergen recall-specific manner, and secretion was amplified by IL-33. Using scRNA-seq and scATAC-seq, we defined the cellular identity of a distinct population of T cells with a proallergic cytokine pattern. Thus, in a recall model of allergic airway inflammation, IL-9 secretion from a multicytokine-producing CD4+ T cell population was required for an allergen recall response.Item An IL-9-pulmonary macrophage axis defines the allergic lung inflammatory environment(American Association for the Advancement of Science, 2022) Fu, Yongyao; Wang, Jocelyn; Zhou, Baohua; Pajulas, Abigail; Gao, Hongyu; Ramdas, Baskar; Koh, Byunghee; Ulrich, Benjamin J.; Yang, Shuangshuang; Kapur, Reuben; Renauld, Jean-Christophe; Paczesny, Sophie; Liu, Yunlong; Tighe, Robert M.; Licona-Limón, Paula; Flavell, Richard A.; Takatsuka, Shogo; Kitamura, Daisuke; Tepper, Robert S.; Sun, Jie; Kaplan, Mark H.; Microbiology and Immunology, School of MedicineDespite IL-9 functioning as a pleiotropic cytokine in mucosal environments, the IL-9-responsive cell repertoire is still not well defined. Here, we found that IL-9 mediates proallergic activities in the lungs by targeting lung macrophages. IL-9 inhibits alveolar macrophage expansion and promotes recruitment of monocytes that develop into CD11c+ and CD11c- interstitial macrophage populations. Interstitial macrophages were required for IL-9-dependent allergic responses. Mechanistically, IL-9 affected the function of lung macrophages by inducing Arg1 activity. Compared with Arg1-deficient lung macrophages, Arg1-expressing macrophages expressed greater amounts of CCL5. Adoptive transfer of Arg1+ lung macrophages but not Arg1- lung macrophages promoted allergic inflammation that Il9r-/- mice were protected against. In parallel, the elevated expression of IL-9, IL-9R, Arg1, and CCL5 was correlated with disease in patients with asthma. Thus, our study uncovers an IL-9/macrophage/Arg1 axis as a potential therapeutic target for allergic airway inflammation.Item Association Between Asthma and Reduced Androgen Receptor Expression in Airways(Endocrine Society, 2022-03-21) McManus, Jeffrey M.; Gaston, Benjamin; Zein, Joe; Sharifi, Nima; Pediatrics, School of MedicineA growing body of evidence suggests a role for androgens in asthma and asthma control. This includes a sex discordance in disease rates that changes with puberty, experiments in mice showing androgens reduce airway inflammation, and a reported association between airway androgen receptor (AR) expression and disease severity in asthma patients. We set out to determine whether airway AR expression differs between asthma patients and healthy controls. We analyzed data from 8 publicly available data sets with gene expression profiling from airway epithelial cells obtained both from asthma patients and control individuals. We found that airway AR expression was lower in asthma patients than in controls in both sexes, and that having AR expression below the median in the pooled data set was associated with substantially elevated odds of asthma vs having AR expression above the median (odds ratio 4.89; 95% CI, 3.13-7.65, P < .0001). In addition, our results suggest that whereas the association between asthma and AR expression is present in both sexes in most of the age range analyzed, the association may be absent in prepubescent children and postmenopausal women. Our results add to the existing body of evidence suggesting a role for androgens in asthma control.Item Asthma Risk Among Individuals With Androgen Receptor Deficiency(American Medical Association, 2021) Gaston, Benjamin; Marozkina, Nadzeya; Newcomb, Dawn C.; Sharifi, Nima; Zein, Joe; Pediatrics, School of MedicineThis study investigates whether androgen receptor deficiency is associated with increased asthma risk.Item Asthma, Allergy and Vitamin E: Current and Future Perspectives(Elsevier, 2022) Cook-Mills, Joan M.; Averill, Samantha H.; Lajiness, Jacquelyn D.; Pediatrics, School of MedicineAsthma and allergic disease result from interactions of environmental exposures and genetics. Vitamin E is one environmental factor that can modify development of allergy early in life and modify responses to allergen after allergen sensitization. Seemingly varied outcomes from vitamin E are consistent with the differential functions of the isoforms of vitamin E. Mechanistic studies demonstrate that the vitamin E isoforms α-tocopherol and γ-tocopherol have opposite functions in regulation of allergic inflammation and development of allergic disease, with α-tocopherol having anti-inflammatory functions and γ-tocopherol having pro-inflammatory functions in allergy and asthma. Moreover, global differences in prevalence of asthma by country may be a result, at least in part, of differences in consumption of these two isoforms of tocopherols. It is critical in clinical and animal studies that measurements of the isoforms of tocopherols be determined in vehicles for the treatments, and in the plasma and/or tissues before and after intervention. As allergic inflammation is modifiable by tocopherol isoforms, differential regulation by tocopherol isoforms provide a foundation for development of interventions to improve lung function in disease and raise the possibility of early life dietary interventions to limit the development of lung disease.Item Benefits of Airway Androgen Receptor Expression in Human Asthma(American Thoracic Society, 2021) Zein, Joe G.; McManus, Jeffrey M.; Sharifi, Nima; Erzurum, Serpil C.; Marozkina, Nadzeya; Lahm, Timothy; Giddings, Olivia; Davis, Michael D.; DeBoer, Mark D.; Comhair, Suzy A.; Bazeley, Peter; Kim, Hyun Jo; Busse, William; Calhoun, William; Castro, Mario; Chung, Kian Fan; Fahy, John V.; Israel, Elliot; Jarjour, Nizar N.; Levy, Bruce D.; Mauger, David T.; Moore, Wendy C.; Ortega, Victor E.; Peters, Michael; Bleecker, Eugene R.; Meyers, Deborah A.; Zhao, Yi; Wenzel, Sally E.; Gaston, Benjamin; Biostatistics, School of Public HealthRationale: Androgens are potentially beneficial in asthma, but AR (androgen receptor) has not been studied in human airways. Objectives: To measure whether AR and its ligands are associated with human asthma outcomes. Methods: We compared the effects of AR expression on lung function, symptom scores, and fractional exhaled nitric oxide (FeNO) in adults enrolled in SARP (Severe Asthma Research Program). The impact of sex and of androgens on asthma outcomes was also evaluated in the SARP with validation studies in the Cleveland Clinic Health System and the NHANES (U.S. National Health and Nutrition Examination Survey).Measurements and Main Results: In SARP (n = 128), AR gene expression from bronchoscopic epithelial brushings was positively associated with both FEV1/FVC ratio (R2 = 0.135, P = 0.0002) and the total Asthma Quality of Life Questionnaire score (R2 = 0.056, P = 0.016) and was negatively associated with FeNO (R2 = 0.178, P = 9.8 × 10-6) and NOS2 (nitric oxide synthase gene) expression (R2 = 0.281, P = 1.2 × 10-10). In SARP (n = 1,659), the Cleveland Clinic Health System (n = 32,527), and the NHANES (n = 2,629), women had more asthma exacerbations and emergency department visits than men. The levels of the AR ligand precursor dehydroepiandrosterone sulfate correlated positively with the FEV1 in both women and men. Conclusions: Higher bronchial AR expression and higher androgen levels are associated with better lung function, fewer symptoms, and a lower FeNO in human asthma. The role of androgens should be considered in asthma management.Item Blimp-1 is essential for allergen-induced asthma and Th2 cell development in the lung(Rockefeller University Press, 2020-07-06) He, Kun; Hettinga, Angela; Kale, Sagar Laxman; Hu, Sanmei; Xie, Markus M.; Dent, Alexander L.; Ray, Anuradha; Poholek, Amanda C.; Microbiology and Immunology, School of MedicineA Th2 immune response is central to allergic airway inflammation, which afflicts millions worldwide. However, the mechanisms that augment GATA3 expression in an antigen-primed developing Th2 cell are not well understood. Here, we describe an unexpected role for Blimp-1, a transcriptional repressor that constrains autoimmunity, as an upstream promoter of GATA3 expression that is critical for Th2 cell development in the lung to inhaled but not systemically delivered allergens but is dispensable for TFH function and IgE production. Mechanistically, Blimp-1 acts through Bcl6, leading to increased GATA3 expression in lung Th2 cells. Surprisingly, the anti-inflammatory cytokine IL-10, but not the pro-inflammatory cytokines IL-6 or IL-21, is required via STAT3 activation to up-regulate Blimp-1 and promote Th2 cell development. These data reveal a hitherto unappreciated role for an IL-10-STAT3-Blimp-1 circuit as an initiator of an inflammatory Th2 response in the lung to allergens. Thus, Blimp-1 in a context-dependent fashion can drive inflammation by promoting rather than terminating effector T cell responses.