- Browse by Subject
Browsing by Subject "Artemisinin"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Inhibiting the Plasmodium eIF2α Kinase PK4 Prevents Artemisinin-Induced Latency(Elsevier, 2017-12) Zhang, Min; Gallego-Delgado, Julio; Fernandez-Arias, Cristina; Waters, Norman C.; Rodriguez, Ana; Tsu, Moriya; Wek, Ronald C.; Nussenzweig, Victor; Sullivan, William J., Jr.; Pharmacology and Toxicology, School of MedicineArtemisinin and its derivatives (ARTs) are frontline antimalarial drugs. However, ART monotherapy is associated with a high frequency of recrudescent infection, resulting in treatment failure. A subset of parasites is thought to undergo ART-induced latency, but the mechanisms remain unknown. Here, we report that ART treatment results in phosphorylation of the parasite eukaryotic initiation factor-2α (eIF2α), leading to repression of general translation and latency induction. Enhanced phosphorylated eIF2α correlates with high rates of recrudescence following ART, and inhibiting eIF2α dephosphorylation renders parasites less sensitive to ART treatment. ART-induced eIF2α phosphorylation is mediated by the Plasmodium eIF2α kinase, PK4. Overexpression of a PK4 dominant-negative or pharmacological inhibition of PK4 blocks parasites from entering latency and abolishes recrudescence after ART treatment of infected mice. These results show that translational control underlies ART-induced latency and that interference with this stress response may resolve the clinical problem of recrudescent infection.Item Parenteral artemisinins are associated with reduced mortality and neurologic deficits and improved long-term behavioral outcomes in children with severe malaria(BMC, 2021-07-28) Conroy, Andrea L.; Opoka, Robert O.; Bangirana, Paul; Namazzi, Ruth; Okullo, Allen E.; Georgieff, Michael K.; Cusick, Sarah; Idro, Richard; Ssenkusu, John M.; John, Chandy C.; Pediatrics, School of MedicineBackground: In 2011, the World Health Organization recommended injectable artesunate as the first-line therapy for severe malaria (SM) due to its superiority in reducing mortality compared to quinine. There are limited data on long-term clinical and neurobehavioral outcomes after artemisinin use for treatment of SM. Methods: From 2008 to 2013, 502 Ugandan children with two common forms of SM, cerebral malaria and severe malarial anemia, were enrolled in a prospective observational study assessing long-term neurobehavioral and cognitive outcomes following SM. Children were evaluated a week after hospital discharge, and 6, 12, and 24 months of follow-up, and returned to hospital for any illness. In this study, we evaluated the impact of artemisinin derivatives on survival, post-discharge hospital readmission or death, and neurocognitive and behavioral outcomes over 2 years of follow-up. Results: 346 children received quinine and 156 received parenteral artemisinin therapy (artemether or artesunate). After adjustment for disease severity, artemisinin derivatives were associated with a 78% reduction in in-hospital mortality (adjusted odds ratio, 0.22; 95% CI, 0.07-0.67). Among cerebral malaria survivors, children treated with artemisinin derivatives also had reduced neurologic deficits at discharge (quinine, 41.7%; artemisinin derivatives, 23.7%, p=0.007). Over a 2-year follow-up, artemisinin derivatives as compared to quinine were associated with better adjusted scores (negative scores better) in internalizing behavior and executive function in children irrespective of the age at severe malaria episode. After adjusting for multiple comparisons, artemisinin derivatives were associated with better adjusted scores in behavior and executive function in children <6 years of age at severe malaria exposure following adjustment for child age, sex, socioeconomic status, enrichment in the home environment, and the incidence of hospitalizations over follow-up. Children receiving artesunate had the greatest reduction in mortality and benefit in behavioral outcomes and had reduced inflammation at 1-month follow-up compared to children treated with quinine. Conclusions: Treatment of severe malaria with artemisinin derivatives, particularly artesunate, results in reduced in-hospital mortality and neurologic deficits in children of all ages, reduced inflammation following recovery, and better long-term behavioral outcomes. These findings suggest artesunate has long-term beneficial effects in children surviving severe malaria.