- Browse by Subject
Browsing by Subject "Arginase"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Neuroblastoma Formation Requires Unconventional CD4 T Cells and Arginase-1–Dependent Myeloid Cells(American Association for Cancer Research, 2021) Van de Velde, Lee-Ann; Allen, E. Kaitlynn; Crawford, Jeremy Chase; Wilson, Taylor L.; Guy, Clifford S.; Russier, Marion; Zeitler, Leonie; Bahrami, Armita; Finkelstein, David; Pelletier, Stephane; Schultz-Cherry, Stacey; Thomas, Paul G.; Murray, Peter J.; Medicine, School of MedicineImmune cells regulate tumor growth by mirroring their function as tissue repair organizers in normal tissues. To understand the different facets of immune-tumor collaboration through genetics, spatial transcriptomics, and immunologic manipulation with noninvasive, longitudinal imaging, we generated a penetrant double oncogene-driven autochthonous model of neuroblastoma. Spatial transcriptomic analysis showed that CD4+ and myeloid populations colocalized within the tumor parenchyma, while CD8+ T cells and B cells were peripherally dispersed. Depletion of CD4+ T cells or CCR2+ macrophages, but not B cells, CD8+ T cells, or natural killer (NK) cells, prevented tumor formation. Tumor CD4+ T cells displayed unconventional phenotypes and were clonotypically diverse and antigen independent. Within the myeloid fraction, tumor growth required myeloid cells expressing arginase-1. Overall, these results demonstrate how arginine-metabolizing myeloid cells conspire with pathogenic CD4+ T cells to create permissive conditions for tumor formation, suggesting that these protumorigenic pathways could be disabled by targeting myeloid arginine metabolism. SIGNIFICANCE: A new model of human neuroblastoma provides ways to track tumor formation and expansion in living animals, allowing identification of CD4+ T-cell and macrophage functions required for oncogenesis.Item Selective control of amino acid metabolism by the GCN2 eIF2 kinase pathway in Saccharomyces cerevisiae(BMC, 2010-08-04) Zaborske, John M.; Wu, Xiaochen; Wek, Ronald C.; Pan, Tao; Biochemistry and Molecular Biology, School of MedicineBackground When eukaryotic cells are deprived of amino acids, uncharged tRNAs accumulate and activate the conserved GCN2 protein kinase. Activated Gcn2p up-regulates the general amino acid control pathway through phosphorylation of the translational initiation factor eIF2. In Saccharomyces cerevisiae, Gcn2p is the only kinase that phosphorylates eIF2 to regulate translation through this mechanism. We addressed changes in yeast growth and tRNA aminoacylation, or charging, during amino acid depletion in the presence and absence of GCN2. tRNA charging was measured using a microarray technique which simultaneously measures all cytosolic tRNAs. A fully prototrophic strain, and its isogenic gcn2 Δ counterpart, were used to study depletion for each of the 20 amino acids, with a focus on Trp, Arg, His and Leu, which are metabolically distinct and together provide a good overview on amino acid metabolism. Results While the wild-type strain had no observable phenotype upon depletion for any amino acid, the gcn2 Δ strain showed slow growth in media devoid of only Trp or Arg. Consistent with the growth phenotypes, profiles of genome-wide tRNA charging revealed significant decrease in cognate tRNA charging only in the gcn2 Δ strain upon depletion for Trp or Arg. In contrast, there was no change in tRNA charging during His and Leu depletion in either the wild-type or gcn2 Δ strains, consistent with the null effect on growth during loss of these amino acids. We determined that the growth phenotype of Trp depletion is derived from feedback inhibition of aromatic amino acid biosynthesis. By removing Phe and Tyr from the media in addition to Trp, regular growth was restored and tRNATrp charging no longer decreased. The growth phenotype of Arg depletion is derived from unbalanced nitrogen metabolism. By supplementing ornithine upon Arg depletion, both growth and tRNAArg charging were partially restored.Conclusion Under mild stress conditions the basal activity of Gcn2p is sufficient to allow for proper adaptation to amino acid depletion. This study highlights the importance of the GCN2 eIF2 kinase pathway for maintaining metabolic homeostasis, contributing to appropriate tRNA charging and growth adaptation in response to culture conditions deficient for the central amino acids, tryptophan and arginine.