ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Area‐at‐risk"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Retrospective assessment of at-risk myocardium in reperfused acute myocardial infarction patients using contrast‐enhanced balanced steady‐state free‐precession cardiovascular magnetic resonance at 3T with SPECT validation
    (Elsevier, 2021-03-15) Sun, Zheng; Zhang, Qiuhang; Zhao, Huan; Yan, Chengxi; Yang, Hsin‑Jung; Li, Debiao; Li, Kuncheng; Liu, Zhi; Yang, Qi; Dharmakumar, Rohan; Medicine, School of Medicine
    Background: Contrast-enhanced (CE) steady-state free precession (SSFP) CMR at 1.5T has been shown to be a valuable alternative to T2-based methods for the detection and quantifications of area-at-risk (AAR) in acute myocardial infarction (AMI) patients. However, CE-SSFP's capacity for assessment of AAR at 3T has not been investigated. We examined the clinical utility of CE-SSFP and T2-STIR for the retrospective assessment of AAR at 3T with single-photon-emission-computed tomography (SPECT) validation. Materials and methods: A total of 60 AMI patients (ST-elevation AMI, n = 44; non-ST-elevation AMI, n = 16) were recruited into the CMR study between 3 and 7 days post revascularization. All patients underwent T2-STIR, CE-bSSFP and late-gadolinium-enhancement CMR. For validation, SPECT images were acquired in a subgroup of patients (n = 30). Results: In 53 of 60 patients (88 %), T2-STIR was of diagnostic quality compared with 54 of 60 (90 %) with CE-SSFP. In a head-to-head per-slice comparison (n = 365), there was no difference in AAR quantified using T2-STIR and CE-SSFP (R2 = 0.92, p < 0.001; bias:-0.4 ± 0.8 cm2, p = 0.46). On a per-patient basis, there was good agreement between CE-SSFP (n = 29) and SPECT (R2 = 0.86, p < 0.001; bias: - 1.3 ± 7.8 %LV, p = 0.39) for AAR determination. T2-STIR also showed good agreement with SPECT for AAR measurement (R2 = 0.81, p < 0.001, bias: 0.5 ± 11.1 %LV, p = 0.81). There was also a strong agreement between CE-SSFP and T2-STIR with respect to the assessment of AAR on per-patient analysis (R2 = 0.84, p < 0.001, bias: - 2.1 ± 10.1 %LV, p = 0.31). Conclusions: At 3T, both CE-SSFP and T2-STIR can retrospectively quantify the at-risk myocardium with high accuracy.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University