- Browse by Subject
Browsing by Subject "Apicomplexa"
Now showing 1 - 10 of 19
Results Per Page
Sort Options
Item ApiAP2 transcription factor restricts development of the Toxoplasma tissue cyst(National Academy of Sciences, 2013) Radke, Joshua B.; Lucas, Olivier; De Silva, Erandi K.; Ma, YanFen; Sullivan, William J., Jr.; Weiss, Louis M.; Llinas, Manuel; White, Michael W.; Pharmacology and Toxicology, School of MedicineCellular differentiation leading to formation of the bradyzoite tissue cyst stage is the underlying cause of chronic toxoplasmosis. Consequently, mechanisms responsible for controlling development in the Toxoplasma intermediate life cycle have long been sought. Here, we identified 15 Toxoplasma mRNAs induced in early bradyzoite development that encode proteins with apicomplexan AP2 (ApiAP2) DNA binding domains. Of these 15 mRNAs, the AP2IX-9 mRNA demonstrated the largest expression increase during alkaline-induced differentiation. At the protein level, we found that AP2IX-9 was restricted to the early bradyzoite nucleus and is repressed in tachyzoites and in mature bradyzoites from 30-d infected animals. Conditional overexpression of AP2IX-9 significantly reduced tissue cyst formation and conferred alkaline pH-resistant growth, whereas disruption of the AP2IX-9 gene increased tissue cyst formation, indicating AP2IX-9 operates as a repressor of bradyzoite development. Consistent with a role as a repressor, AP2IX-9 specifically inhibited the expression of bradyzoite mRNAs, including the canonical bradyzoite marker, bradyzoite antigen 1 (BAG1). Using protein binding microarrays, we established the AP2 domain of AP2IX-9 binds a CAGTGT DNA sequence motif and is capable of binding cis-regulatory elements controlling the BAG1 and bradyzoite-specific nucleoside triphosphatase (B-NTPase) promoters. The effect of AP2IX-9 on BAG1 expression was direct because this factor inhibits expression of a firefly luciferase reporter under the control of the BAG1 promoter in vivo, and epitope-tagged AP2IX-9 can be immunoprecipitated with the BAG1 promoter in parasite chromatin. Altogether, these results indicate AP2IX-9 restricts Toxoplasma commitment to develop the mature bradyzoite tissue cyst.Item Effects of PERK eIF2α Kinase Inhibitor against Toxoplasma gondii(American Society for Microbiology, 2018-10-24) Augusto, Leonardo; Martynowicz, Jennifer; Staschke, Kirk A.; Wek, Ronald C.; Sullivan, William J., Jr.; Biochemistry and Molecular Biology, School of MedicineToxoplasma gondii is an obligate intracellular parasite that has infected one-third of the population. Upon infection of warm-blooded vertebrates, the replicating form of the parasite (tachyzoite) converts into a latent form (bradyzoite) present in tissue cysts. During immune deficiency, bradyzoites can reconvert into tachyzoites and cause life-threatening toxoplasmosis. We previously reported that translational control through phosphorylation of the α subunit of T. gondii eukaryotic initiation factor 2 (eIF2α) (TgIF2α) is a critical component of the parasite stress response. Diverse stresses can induce the conversion of tachyzoites to bradyzoites, including those disrupting the parasite's endoplasmic reticulum (ER) (ER stress). Toxoplasma possesses four eIF2α kinases, one of which (TgIF2K-A) localizes to the parasite ER analogously to protein kinase R-like endoplasmic reticulum kinase (PERK), the eIF2α kinase that responds to ER stress in mammalian cells. Here, we investigated the effects of a PERK inhibitor (PERKi) on Toxoplasma Our results show that the PERKi GSK2606414 blocks the enzymatic activity of TgIF2K-A and reduces TgIF2α phosphorylation specifically in response to ER stress. PERKi also significantly impeded multiple steps of the tachyzoite lytic cycle and sharply lowered the frequency of bradyzoite differentiation in vitro Pretreatment of host cells with PERKi prior to infection did not affect parasite infectivity, and PERKi still impaired parasite replication in host cells lacking PERK. In mice, PERKi conferred modest protection from a lethal dose of Toxoplasma Our findings represent the first pharmacological evidence supporting TgIF2K-A as an attractive new target for the treatment of toxoplasmosis.Item Elongator protein 3 (Elp3) lysine acetyltransferase is a tail-anchored mitochondrial protein in Toxoplasma gondii(Elsevier, 2013) Stilger, Krista L.; Sullivan, William J., Jr.; Pharmacology and Toxicology, School of MedicineBackground: Protein acetylation is prevalent in mitochondria, yet acetyltransferases mediating this activity are unknown. Results: Toxoplasma Elongator protein 3 (Elp3) possesses a unique C-terminal transmembrane domain necessary and sufficient to target it to the mitochondria. Conclusion: Elp3 is an essential tail-anchored mitochondrial acetyltransferase in Toxoplasma. Significance: Elp3 has conserved functions involving mitochondria that may predate its established role in transcription.Item An ensemble of specifically targeted proteins stabilizes cortical microtubules in the human parasite Toxoplasma gondii(American Society for Cell Biology, 2016-02-01) Liu, Jun; He, Yudou; Benmerzouga, Imaan; Sullivan, William J., Jr.; Morrissette, Naomi S.; Murray, John M.; Hu, Ke; Department of Pharmacology and Toxicology, IU School of MedicineAlthough all microtubules within a single cell are polymerized from virtually identical subunits, different microtubule populations carry out specialized and diverse functions, including directional transport, force generation, and cellular morphogenesis. Functional differentiation requires specific targeting of associated proteins to subsets or even subregions of these polymers. The cytoskeleton of Toxoplasma gondii, an important human parasite, contains at least five distinct tubulin-based structures. In this work, we define the differential localization of proteins along the cortical microtubules of T. gondii, established during daughter biogenesis and regulated by protein expression and exchange. These proteins distinguish cortical from mitotic spindle microtubules, even though the assembly of these subsets is contemporaneous during cell division. Finally, proteins associated with cortical microtubules collectively protect the stability of the polymers with a remarkable degree of functional redundancy.Item Expansion Microscopy Reveals Plasmodium falciparum Blood-Stage Parasites Undergo Anaphase with A Chromatin Bridge in the Absence of Mini-Chromosome Maintenance Complex Binding Protein(MDPI, 2021-11) Liffner, Benjamin; Absalon, Sabrina; Pharmacology and Toxicology, School of MedicineThe malaria parasite Plasmodium falciparum undergoes closed mitosis, which occurs within an intact nuclear envelope, and differs significantly from its human host. Mitosis is underpinned by the dynamics of microtubules and the nuclear envelope. To date, our ability to study P. falciparum mitosis by microscopy has been hindered by the small size of the P. falciparum nuclei. Ultrastructure expansion microscopy (U-ExM) has recently been developed for P. falciparum, allowing the visualization of mitosis at the individual nucleus level. Using U-ExM, three intranuclear microtubule structures are observed: hemispindles, mitotic spindles, and interpolar spindles. A previous study demonstrated that the mini-chromosome maintenance complex binding-protein (MCMBP) depletion caused abnormal nuclear morphology and microtubule defects. To investigate the role of microtubules following MCMBP depletion and study the nuclear envelope in these parasites, we developed the first nuclear stain enabled by U-ExM in P. falciparum. MCMBP-deficient parasites show aberrant hemispindles and mitotic spindles. Moreover, anaphase chromatin bridges and individual nuclei containing multiple microtubule structures were observed following MCMBP knockdown. Collectively, this study refines our understanding of MCMBP-deficient parasites and highlights the utility of U-ExM coupled with a nuclear envelope stain for studying mitosis in P. falciparum.Item Functions of the Unique N-terminus of a GCN5 Histone Acetylase in Toxoplasma gondii(2007-05-18T13:14:16Z) Bhatti, Micah M.; Sullivan, William J., Jr.; Chan, Edward M.; Queener, Sherry F.; Safa, Ahmad R.; Sinai, Anthony P.; Vasko, Michael, R.GCN5 is a histone acetyltransferase (HAT) that remodels chromatin by acetylating lysine residues of histones. The GCN5 HAT identified in Toxoplasma gondii (TgGCN5) contains a unique N-terminal “extension” that bears no similarity to known proteins and is devoid of known protein motifs. The hypothesis of this thesis is the N-terminal extension is critical to the function of TgGCN5. Three possible roles of the N-terminus were investigated: nuclear localization, protein-protein interactions, and substrate recognition. Subcellular localization was determined via immunocytochemistry using parasites expressing recombinant forms of TgGCN5 fused to a FLAG tag. Initial studies performed with parasites expressing full length FLAG-TgGCN5 were positive for nuclear localization. Without the N-terminal extension (FLAG-ΔNT-TgGCN5) the protein remains cytoplasmic. Additional studies mapped a six amino acid motif (RKRVKR) as the nuclear localization signal (NLS). When RKRVKR is fused to a cytoplasmic protein, it gains access to the nucleus. Furthermore, we have established the NLS interacts with Toxoplasma importin α, a protein involved in nuclear trafficking. Interaction with importin α provides evidence that the TgGCN5 N-terminal extension is involved in mediating protein-protein interactions. In order to identify additional interacting proteins, FLAG affinity purification was performed on parasites expressing full length FLAG-TgGCN5 and FLAG-ΔNT-TgGCN5. Upon comparing the results of the two purifications, proteins captured with only full length TgGCN5 may be interacting with the N-terminal extension. Full length TgGCN5 affinity purification indicates an interaction with histone proteins, two different homologues of Ada2 (adapter protein reported to interact with GCN5 homologues), and several heat shock proteins. With regard to substrate recognition, the N-terminal extension of TgGCN5 is dispensable for the acetylation of non-nucleosomal histones in vitro. However, the lysine acetylated by TgGCN5 is surprisingly unique. Other GCN5 homologues preferentially acetylate lysine 14 in histone H3, but TgGCN5 exclusively acetylates lysine 18 in histone H3 and has no activity on lysine 14. Taken together, these results argue that the N-terminal extension of TgGCN5 is critical for mediating protein-protein interactions, including those responsible for trafficking the HAT to the parasite nucleus but does not appear to be required for the acetylation of non-nucleosomal histones.Item GCN2-like eIF2α kinase manages the amino acid starvation response in Toxoplasma gondii(Elsevier, 2014-02) Konrad, Christian; Wek, Ronald C.; Sullivan, William J., Jr.; Department of Pharmacology and Toxicology, IU School of MedicineThe apicomplexan protozoan Toxoplasma gondii is a significant human and veterinary pathogen. As an obligate intracellular parasite, Toxoplasma depends on nutrients provided by the host cell and needs to adapt to limitations in available resources. In mammalian cells, translational regulation via GCN2 phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) is a key mechanism for adapting to nutrient stress. Toxoplasma encodes two GCN2-like protein kinases, TgIF2K-C and TgIF2K-D. We previously showed that TgIF2K-D phosphorylates T. gondii eIF2α (TgIF2α) upon egress from the host cell, which enables the parasite to overcome exposure to the extracellular environment. However, the function of TgIF2K-C remained unresolved. To determine the functions of TgIF2K-C in the parasite, we cloned the cDNA encoding TgIF2K-C and generated knockout parasites of this TgIF2α kinase to study its function during the lytic cycle. The TgIF2K-C knockout did not exhibit a fitness defect compared with parental parasites. However, upon infection of human fibroblasts that were subsequently cultured in glutamine-free medium, the intracellular TgIF2K-C knockout parasites were impeded for induced phosphorylation of TgIF2α and showed a 50% reduction in the number of plaques formed compared with parental parasites. Furthermore, we found that this growth defect in glutamine-free media was phenocopied in parasites expressing only a non-phosphorylatable TgIF2α (TgIF2α-S71A), but not in a TgIF2K-D knockout. These studies suggest that Toxoplasma GCN2-like kinases TgIF2K-C and TgIF2K-D evolved to have distinct roles in adapting to changes in the parasite’s environment.Item Genome-wide localization of histone variants in Toxoplasma gondii implicates variant exchange in stage-specific gene expression(BMC, 2022-02-14) Nardelli, Sheila C.; Silmon de Monerri, Natalie C.; Vanagas, Laura; Wang, Xiaonan; Tampaki, Zoi; Sullivan, William J., Jr.; Angel, Sergio O.; Kim, Kami; Pharmacology and Toxicology, School of MedicineBackground: Toxoplasma gondii is a protozoan parasite that differentiates from acute tachyzoite stages to latent bradyzoite forms in response to environmental cues that modify the epigenome. We studied the distribution of the histone variants CenH3, H3.3, H2A.X, H2A.Z and H2B.Z, by genome-wide chromatin immunoprecipitation to understand the role of variant histones in developmental transitions of T. gondii parasites. Results: H3.3 and H2A.X were detected in telomere and telomere associated sequences, whereas H3.3, H2A.X and CenH3 were enriched in centromeres. Histones H2A.Z and H2B.Z colocalize with the transcriptional activation mark H3K4me3 in promoter regions surrounding the nucleosome-free region upstream of the transcription start site. The H2B.Z/H2A.Z histone pair also localizes to the gene bodies of genes that are silent but poised for activation, including bradyzoite stage-specific genes. The majority of H2A.X and H2A.Z/H2B.Z loci do not overlap, consistent with variant histones demarcating specific functional regions of chromatin. The extent of enrichment of H2A.Z/H2B.Z (and H3.3 and H2A.X) within the entire gene (5'UTR and gene body) reflects the timing of gene expression during the cell cycle, suggesting that dynamic turnover of H2B.Z/H2A.Z occurs during the tachyzoite cell cycle. Thus, the distribution of the variant histone H2A.Z/H2B.Z dimer defines active and developmentally silenced regions of the T. gondii epigenome including genes that are poised for expression. Conclusions: Histone variants mark functional regions of parasite genomes with the dynamic placement of the H2A.Z/H2B.Z dimer implicated as an evolutionarily conserved regulator of parasite and eukaryotic differentiation.Item Investigation of the Knockout of LMF1 on the Transcriptome of Toxoplasma gondii(2024-01) Thibodeau, Katherine E.; Arrizabalaga, Gustavo; Absalon, Sabrina; Fehrenbacher, Jill; Flak, Jonathan; Schmidt, NathanToxoplasma gondii is an obligate intracellular apicomplexan parasite that infects one third of the global population. There are limited treatments for Toxoplasmosis, however a potential drug target for Toxoplasma is its mitochondrion. While much is known about the function of this organelle in Toxoplasma, little is known about the mechanisms that regulate mitochondrial structure and division. The shape of the mitochondrion changes throughout the life cycle of the parasite. When inside a host cell, the mitochondrion is in a lasso shape, stretching around the periphery of the parasite, while in extracellular parasites it is collapsed towards the apical end of the parasite. While in a lasso shape the mitochondrion shows areas of contact with the parasite pellicle. We have determined that the proteins LMF1 (associated with the outer mitochondrial membrane) and IMC10 (inner membrane complex) interact and form a reversible tether that maintains the lasso shape of the mitochondrion. When either of these proteins are knocked out, the mitochondrion collapses. To elucidate the biological relevance of the interaction between the mitochondrion and the pellicle we explored the consequence of disrupting the interaction on the transcriptome of the parasite. RNA sequencing of the LMF1 knockout strain showed a disruption in the expression of genes involved in nucleotide metabolism and Coenzyme A biosynthesis, which might be an adaptation mechanism to the disruption of mitochondrial morphology. Current work focuses on investigating the connection between mitochondrial tethering and these pathways as well as a potential role for the mitochondrion/pellicle connection in metabolite transport.Item Lysine acetyltransferase Gcn5-B regulates the expression of crucial genes in Toxoplasma and its function is regulated through lysine acetylation(2014-04-02) Wang, Jiachen; Sullivan, William J., Jr.; Queener, Sherry F.; Arrizabalaga, Gustavo; Nass, Richard M.; Lu, TaoHistone acetylation has been linked to developmental changes in gene expression and is a validated drug target of apicomplexan parasites, but little is known about the roles of individual histone modifying enzymes and how they are recruited to target genes. The protozoan parasite Toxoplasma gondii (phylum Apicomplexa) is unusual among invertebrates in possessing two GCN5-family lysine acetyltransferases (KATs). While GCN5a is required for gene expression in response to alkaline stress, this KAT is dispensable for parasite proliferation in normal culture conditions. In contrast, GCN5b cannot be disrupted, suggesting it is essential for Toxoplasma viability. To further explore the function of GCN5b, we generated clonal parasites expressing an inducible HA-tagged form of GCN5b containing a point mutation that ablates enzymatic activity (E703G). Stabilization of this dominant-negative form of GCN5b was mediated through ligand-binding to a destabilization domain (dd) fused to the protein. Induced accumulation of the ddHAGCN5b(E703G) protein led to a rapid arrest in parasite replication. Growth arrest was accompanied by a decrease in histone H3 acetylation at specific lysine residues as well as reduced expression of GCN5b target genes in GCN5b(E703G) parasites, which were identified using chromatin immunoprecipitation coupled with microarray hybridization (ChIP-chip). We also demonstrate that GCN5b interacts with AP2-domain proteins, which are plant-like transcription factors in Apicomplexa. The interactions between GCN5b, AP2IX-7, and AP2X-8 were confirmed by reciprocal co-immunoprecipitation and revealed a “core complex” that includes the co-activator ADA2-A, TFIID subunits, LEO1 polymerase-associated factor (Paf1) subunit, and RRM proteins. The dominant-negative phenotype of ddHAGCN5b(E703G) parasites, considered with the proteomics and ChIP-chip data, indicate that GCN5b plays a central role in transcriptional and chromatin remodeling complexes. We conclude that GCN5b has a non-redundant and indispensable role in regulating gene expression required during the Toxoplasma lytic cycle.