- Browse by Subject
Browsing by Subject "ApiAP2"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item AP2IX-4, a cell cycle regulated nuclear factor, modulates gene expression during bradyzoite development in toxoplasma gondii(2017-01-10) Huang, Sherri Y.; Arrizabalaga, Gustavo; Sullivan, William J., Jr.; Lu, Tao; Takagi, Yuichiro; Zhang, Jian-TingToxoplasma gondii is a ubiquitous, protozoan parasite contributing significantly to global human and animal health. In the host, this obligate intracellular parasite converts into a latent tissue cyst form known as the bradyzoite, which is impervious to the immune response. The tissue cysts facilitate wide-spread transmission through the food chain and give rise to chronic toxoplasmosis in immune compromised patients. In addition, they may reactivate into replicating tachyzoites which cause tissue damage and disseminated disease. Current available drugs do not appear to have appreciable activity against latent bradyzoites. Therefore, a better understanding of the molecular mechanisms that drive interconversion between tachyzoite and bradyzoite forms is required to manage transmission and pathogenesis of Toxoplasma. Conversion to the bradyzoite is accompanied by an altered transcriptome, but the molecular players directing this process are largely uncharacterized. Studies of stage-specific promoters revealed that conventional cis-acting mechanisms operate to regulate developmental gene expression during tissue cyst formation. The major class of transcription factor likely to work through these cis-regulatory elements appears to be related to the Apetala-2 (AP2) family in plants. The Toxoplasma genome contains nearly 70 proteins harboring at least one predicted AP2 domain, but to date only three of these T. gondii AP2 proteins have been linked to bradyzoite development. We show that the putative T. gondii transcription factor, AP2IX-4, is localized to the parasite nucleus and exclusively expressed in tachyzoites and bradyzoites undergoing division. Knockout of AP2IX-4 had negligible effect on tachyzoite replication, but resulted in a reduced frequency of bradyzoite cysts in response to alkaline stress induction – a defect that is reversible by complementation. Microarray analyses revealed an enhanced activation of bradyzoite-associated genes in the AP2IX-4 knockout during alkaline conditions. In mice, the loss of AP2IX-4 resulted in a modest virulence defect and reduced brain cyst burden. Complementation of the AP2IX-4 knockout restored cyst counts to wild-type levels. These findings illustrate the complex role of AP2IX-4 in bradyzoite development and that certain transcriptional mechanisms responsible for tissue cyst development operate across parasite division.Item Toxoplasma gondii AP2IX-4 Regulates Gene Expression during Bradyzoite Development(American Society for Microbiology, 2017-03-15) Huang, Sherri; Holmes, Michael J.; Radke, Joshua B.; Hong, Dong-Pyo; Liu, Ting-Kai; White, Michael W.; Sullivan, William J., Jr.; Department of Pharmacology and Toxicology, IU School of MedicineToxoplasma gondii is a protozoan parasite of great importance to human and animal health. In the host, this obligate intracellular parasite persists as a tissue cyst that is imperceptible to the immune response and unaffected by current therapies. The tissue cysts facilitate transmission through predation and give rise to chronic cycles of toxoplasmosis in immunocompromised patients. Transcriptional changes accompany conversion of the rapidly replicating tachyzoites into the encysted bradyzoites, and yet the mechanisms underlying these alterations in gene expression are not well defined. Here we show that AP2IX-4 is a nuclear protein exclusively expressed in tachyzoites and bradyzoites undergoing division. Knockout of AP2IX-4 had no discernible effect on tachyzoite replication but resulted in a reduced frequency of tissue cyst formation following alkaline stress induction-a defect that is reversible by complementation. AP2IX-4 has a complex role in regulating bradyzoite gene expression, as the levels of many bradyzoite mRNAs dramatically increased beyond those seen under conditions of normal stress induction in AP2IX-4 knockout parasites exposed to alkaline media. The loss of AP2IX-4 also resulted in a modest virulence defect and reduced cyst burden in chronically infected mice, which was reversed by complementation. These findings illustrate that the transcriptional mechanisms responsible for tissue cyst development operate across the intermediate life cycle from the dividing tachyzoite to the dormant bradyzoite. IMPORTANCEToxoplasma gondii is a single-celled parasite that persists in its host as a transmissible tissue cyst. How the parasite converts from its replicative form to the bradyzoites housed in tissue cysts is not well understood, but the process clearly involves changes in gene expression. Here we report that parasites lacking a cell cycle-regulated transcription factor called AP2IX-4 display reduced frequencies of tissue cyst formation in culture and in a mouse model of infection. Parasites missing AP2IX-4 lose the ability to regulate bradyzoite genes during tissue cyst development. Expressed in developing bradyzoites still undergoing division, AP2IX-4 may serve as a useful marker in the study of transitional forms of the parasite.