- Browse by Subject
Browsing by Subject "Anoxemia"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item The effects of carbon monoxide, hypoxic hypoxia, and carbon dioxide on cardiovascular responses to catecholamines and angiotensin in rats(1977) Chin Tseng, Marjorie Mei-ChwenItem Effects of choline kinase activity on phospholipid metabolism and malignant phenotype of prostate cancer cells(2010-10) Bansal, Aditya; DeGrado, Timothy R.; Harris, Robert A. (Robert Allison), 1939-; Bosron, William F.; Klaunig, James E.High choline uptake and increased choline kinase activity have been reported in many cancers. This has motivated the use of choline as a biomarker for tumor imaging. Tumors in general are heterogeneous in nature with respect to oxygen tension. There are regions of hypoxia and normoxia that are expected to have different metabolism but regulation of choline metabolism under hypoxia is poorly understood. It is important to clarify the status of choline metabolism in hypoxic microenvironment as it will have an impact on potential of choline as a cancer biomarker. The primary goal was to determine the status of choline phosphorylation in hypoxic cancer cells and its effect on uptake of choline. This was examined by tracer studies in cancer cells exposed to hypoxia. It was observed that hypoxia universally inhibits choline uptake /phosphorylation in cancer cells. Decreased choline phosphorylation resulted in transient uptake of choline radiotracers in cultured cancer cells and 9L tumors suggesting potential problem in using choline as a biomarker for cancers in hypoxic microenvironment. To investigate the mechanism behind decrease in choline phosphorylation, steady state levels of choline metabolites were measured and choline kinase catalyzed choline phosphorylation step was found to be rate-limiting in PC-3 cells. This suggested that modulation in choline kinase levels can alter choline metabolism in hypoxic cancer cells. Expression and activity assays for choline kinase revealed that choline kinase expression is down-regulated in hypoxia. This regulation involved transcriptional level mediation by HIF1 at the conserved HRE7 site in choline kinase promoter. To further understand the importance of down-regulation of choline kinase in hypoxia, stable prostate cancer cell lines over-expressing choline kinase were generated. Effect of over-expression of choline kinase in hypoxia was evaluated in terms of malignant phenotypes like proliferation rate, anchorage independent growth and invasion potential. Both over-expression of choline kinase and hypoxia had a pronounced effect on malignant phenotypes of prostate cancer cells. Further study showed that increased choline kinase activity and hypoxic tumor microenvironment are important for progression of early-stage, androgen-dependent LNCaP prostate cancer cells but confer little survival advantage in undifferentiated, androgen-independent PC-3 prostate cancer cells.Item HIF-1α regulates CD55 expression in airway epithelium(2015-06-08) Pandya, Pankita HemantRationale: CD55 down-regulation on airway epithelium correlates with local complement activation observed in hypoxia-associated pulmonary diseases. Therefore, we hypothesized that induction of hypoxia inducible factor 1 alpha (HIF-1α) in hypoxic airway epithelium, mediates CD55 down-regulation. Methods: Chetomin and HIF-1α siRNA inhibited HIF-1α in hypoxic SAECs (1% O2), and mice lungs (10% O2). DMOG mediated HIF-1α stabilization in normoxic SAECs and mice lungs (21% O2). Transduction of SAECs with AdCA5 also stabilized HIF-1α. CD55 and CA9 transcripts were measured by RT-PCR. CD55 and HIF-1α protein expression was assessed by western blots. In vivo, immunohistochemistry (IHC) confirmed CD55 and HIF-1α expression. C3a and C5a levels in bronchoalveolar lavage fluid (BALF) were measured by ELISA. Results: HIF-1α was induced in 6 hour hypoxic SAECs (p<0.05), but CD55 transcripts were repressed (p<0.05). CD55 protein was down-regulated by 72 hours (p<0.05). CA9 transcripts were elevated by 48 -72 hours (p<0.05 and p<0.01, respectively). In vivo, CD55 transcripts and protein were down- regulated by 24 hours post-hypoxia (p<0.01) which corresponded to complement activation (p<0.05) in BALF. However, CA9 was increased (p<0.01). Chetomin (100nM) treatment in 6 hour hypoxic SAECs, recovered CD55 transcripts (p<0.01) and protein (p<0.05), but down-regulated CA9 (p<0.05). Similarly, in vivo chetomin (1mg/ml) treatment recovered CD55 protein (p<0.01) and down-regulated CA9 (p<0.01). Silencing HIF-1α (50nM) in hypoxic SAECs restored CD55 transcripts by 6 hours (p<0.05), and protein expression by 24 hours (p<0.05). However, CA9 was repressed (p<0.01). In vivo silencing of HIF-1α (50µg) restored CD55 protein expression (p<0.05) but down-regulated CA9 (p<0.05). Stabilizing HIF-1α in normoxic SAECs via DMOG (1µM), down-regulated CD55 transcripts and protein (p<0.01), but increased CA9 within 6-24 hours (p<0.05 and p<0.01, respectively). HIF-1α induction by DMOG (1mg/ml) in normoxic mice lungs down-regulated CD55 transcripts (p<0.01) and protein (p<0.01), but increased CA9 (p<0.05). Induction of HIF-1α in AdCA5 (50 PFUs/cell) transduced normoxic SAECs, resulted in CD55 protein down-regulation (p<0.05), but increased CA9 (p<0.001). Conclusions: HIF-1α down-regulates CD55 on airway epithelium. Targeting this mechanism may be a potential therapeutic intervention for attenuating complement activation in hypoxic pulmonary diseases.