- Browse by Subject
Browsing by Subject "Anopheles"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Item Characterization of an adulticidal and larvicidal interfering RNA pesticide that targets a conserved sequence in mosquito G protein-coupled dopamine 1 receptor genes(Elsevier, 2020) Hapairai, Limb K.; Mysore, Keshava; Sun, Longhua; Li, Ping; Wang, Chien-Wei; Scheel, Nicholas D.; Lesnik, Alexandra; Scheel, Max P.; Igiede, Jessica; Wei, Na; Severson, David W.; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineG protein-coupled receptors (GPCRs), key regulators of a variety of critical biological processes, are attractive targets for insecticide development. Given the importance of these receptors in many organisms, including humans, it is critical that novel pesticides directed against GPCRs are designed to be species-specific. Here, we present characterization of an interfering RNA pesticide (IRP) targeting the mosquito GPCR-encoding dopamine 1 receptor (dop1) genes. A small interfering RNA corresponding to dop1 was identified in a screen for IRPs that kill Aedes aegypti during both the adult and larval stages. The 25 bp sequence targeted by this IRP is conserved in the dop1 genes of multiple mosquito species, but not in non-target organisms, indicating that it could function as a biorational mosquito insecticide. Aedes aegypti adults treated through microinjection or attractive toxic sugar bait delivery of small interfering RNA corresponding to the target site exhibited severe neural and behavioral defects and high levels of adult mortality. Likewise, A. aegypti larval consumption of dried inactivated yeast tablets prepared from a Saccharomyces cerevisiae strain engineered to express short hairpin RNA corresponding to the dop1 target site resulted in severe neural defects and larval mortality. Aedes albopictus and Anopheles gambiae adult and larval mortality was also observed following treatment with dop1 IRPs, which were not toxic to non-target arthropods. The results of this investigation indicate that dop1 IRPs can be used for species-specific targeting of dop1 GPCRs and may represent a new biorational strategy for control of both adult and larval mosquitoes.Item Maximizing the Potential of Attractive Targeted Sugar Baits (ATSBs) for Integrated Vector Management(MDPI, 2023-06-28) Njoroge, Teresia Muthoni; Hamid-Adiamoh, Majidah; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineDue to the limitations of the human therapeutics and vaccines available to treat and prevent mosquito-borne diseases, the primary strategy for disease mitigation is through vector control. However, the current tools and approaches used for mosquito control have proven insufficient to prevent malaria and arboviral infections, such as dengue, Zika, and lymphatic filariasis, and hence, these diseases remain a global public health threat. The proven ability of mosquito vectors to adapt to various control strategies through insecticide resistance, invasive potential, and behavioral changes from indoor to outdoor biting, combined with human failures to comply with vector control requirements, challenge sustained malaria and arboviral disease control worldwide. To address these concerns, increased efforts to explore more varied and integrated control strategies have emerged. These include approaches that involve the behavioral management of vectors. Attractive targeted sugar baits (ATSBs) are a vector control approach that manipulates and exploits mosquito sugar-feeding behavior to deploy insecticides. Although traditional approaches have been effective in controlling malaria vectors indoors, preventing mosquito bites outdoors and around human dwellings is challenging. ATSBs, which can be used to curb outdoor biting mosquitoes, have the potential to reduce mosquito densities and clinical malaria incidence when used in conjunction with existing vector control strategies. This review examines the available literature regarding the utility of ATSBs for mosquito control, providing an overview of ATSB active ingredients (toxicants), attractants, modes of deployment, target organisms, and the potential for integrating ATSBs with existing vector control interventions.Item Mechanistic insights into the interaction between the host gut microbiome and malaria(Public Library of Science, 2023-10-12) Mandal, Rabindra K.; Schmidt, Nathan W.; Pediatrics, School of MedicineMalaria is a devastating infectious disease and significant global health burden caused by the bite of a Plasmodium-infected female Anopheles mosquito. Gut microbiota was recently discovered as a risk factor of severe malaria. This review entails the recent advances on the impact of gut microbiota composition on malaria severity and consequence of malaria infection on gut microbiota in mammalian hosts. Additionally, this review provides mechanistic insight into interactions that might occur between gut microbiota and host immunity which in turn can modulate malaria severity. Finally, approaches to modulate gut microbiota composition are discussed. We anticipate this review will facilitate novel hypotheses to move the malaria-gut microbiome field forward.Item PK4, a eukaryotic initiation factor 2α(eIF2α) kinase, is essential for the development of the erythrocytic cycle of Plasmodium(National Academy of Sciences, 2012) Zhang, Min; Mishra, Satish; Sakthivel, Ramanavelan; Rojas, Margarito; Ranjan, Ravikant; Sullivan, William J., Jr.; Fontoura, Beatriz M. A.; Ménard, Robert; Dever, Thomas E.; Nussenzweig, Victor; Pharmacology and Toxicology, School of MedicineIn response to environmental stresses, the mammalian serine threonine kinases PERK, GCN2, HRI, and PKR phosphorylate the regulatory serine 51 of the eukaryotic translation initiation factor 2α (eIF2α) to inhibit global protein synthesis. Plasmodium, the protozoan that causes malaria, expresses three eIF2α kinases: IK1, IK2, and PK4. Like GCN2, IK1 regulates stress response to amino acid starvation. IK2 inhibits development of malaria sporozoites present in the mosquito salivary glands. Here we show that the phosphorylation by PK4 of the regulatory serine 59 of Plasmodium eIF2α is essential for the completion of the parasite's erythrocytic cycle that causes disease in humans. PK4 activity leads to the arrest of global protein synthesis in schizonts, where ontogeny of daughter merozoites takes place, and in gametocytes that infect Anopheles mosquitoes. The implication of these findings is that drugs that reduce PK4 activity should alleviate disease and inhibit malaria transmission.Item Targeting Mosquitoes through Generation of an Insecticidal RNAi Yeast Strain Using Cas-CLOVER and Super PiggyBac Engineering in Saccharomyces cerevisiae(MDPI, 2023-10-27) Brizzee, Corey; Mysore, Keshava; Njoroge, Teresia M.; McConnell, Seth; Hamid-Adiamoh, Majidah; Stewart, Akilah T. M.; Kinder, J. Tyler; Crawford, Jack; Duman-Scheel, Molly; Medical and Molecular Genetics, School of MedicineThe global deployment of RNAi yeast insecticides involves transitioning from the use of laboratory yeast strains to more robust strains that are suitable for scaled fermentation. In this investigation, the RNA-guided Cas-CLOVER system was used in combination with Piggybac transposase to produce robust Saccharomyces cerevisiae strains with multiple integrated copies of the Sh.463 short hairpin RNA (shRNA) insecticide expression cassette. This enabled the constitutive high-level expression of an insecticidal shRNA corresponding to a target sequence that is conserved in mosquito Shaker genes, but which is not found in non-target organisms. Top-expressing Cas-CLOVER strains performed well in insecticide trials conducted on Aedes, Culex, and Anopheles larvae and adult mosquitoes, which died following consumption of the yeast. Scaled fermentation facilitated the kilogram-scale production of the yeast, which was subsequently heat-killed and dried. These studies indicate that RNAi yeast insecticide production can be scaled, an advancement that may one day facilitate the global distribution of this new mosquito control intervention.