- Browse by Subject
Browsing by Subject "Androgen antagonists"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Bone health effects of androgen-deprivation therapy and androgen receptor inhibitors in patients with nonmetastatic castration-resistant prostate cancer(Springer Nature, 2021) Hussain, Arif; Tripathi, Abhishek; Pieczonka, Christopher; Cope, Diane; McNatty, Andrea; Logothetis, Christopher; Guise, Theresa; Medicine, School of MedicineBackground: Osteoporosis is a skeletal disorder characterized by compromised bone strength, resulting in increased fracture risk. Patients with prostate cancer may have multiple risk factors contributing to bone fragility: advanced age, hypogonadism, and long-term use of androgen-deprivation therapy. Despite absence of metastatic disease, patients with nonmetastatic castrate-resistant prostate cancer receiving newer androgen receptor inhibitors can experience decreased bone mineral density. A systematic approach to bone health care has been hampered by a simplistic view that does not account for heterogeneity among prostate cancer patients or treatments they receive. This review aims to raise awareness in oncology and urology communities regarding the complexity of bone health, and to provide a framework for management strategies for patients with nonmetastatic castrate-resistant prostate cancer receiving androgen receptor inhibitor treatment. Methods: We searched peer-reviewed literature on the PubMed database using key words "androgen-deprivation therapy," "androgen receptor inhibitors," "bone," "bone complications," and "nonmetastatic prostate cancer" from 2000 to present. Results: We discuss how androgen inhibition affects bone health in patients with nonmetastatic castrate-resistant prostate cancer. We present data from phase 3 trials on the three approved androgen receptor inhibitors with regard to effects on bone. Finally, we present management strategies for maintenance of bone health. Conclusions: In patients with nonmetastatic castrate-resistant prostate cancer, aging, and antiandrogen therapy contribute to bone fragility. Newer androgen receptor inhibitors were associated with falls or fractures in a small subset of patients. Management guidelines include regular assessment of bone density, nutritional guidance, and use of antiresorptive bone health agents when warranted.Item Targeted activation of androgen receptor signaling in the periosteum improves bone fracture repair(Springer Nature, 2022-02-08) Lan, Kuo-Chung; Wei, Kuo-Ting; Lin, Pei-Wen; Lin, Ching-Chen; Won, Pei-Ling; Liu, Ya-Fen; Chen, Yun-Ju; Cheng, Bi-Hua; Chu, Tien-Min G.; Chen, Jia-Feng; Huang, Ko-En; Chang, Chawnshang; Kang, Hong-Yo; Biomedical and Applied Sciences, School of DentistryLow testosterone level is an independent predictor of osteoporotic fracture in elderly men as well as increased fracture risk in men undergoing androgen deprivation. Androgens and androgen receptor (AR) actions are essential for bone development and homeostasis but their linkage to fracture repair remains unclear. Here we found that AR is highly expressed in the periosteum cells and is co-localized with a mesenchymal progenitor cell marker, paired-related homeobox protein 1 (Prrx1), during bone fracture repair. Mice lacking the AR gene in the periosteum expressing Prrx1-cre (AR-/Y;Prrx1::Cre) but not in the chondrocytes (AR-/Y;Col-2::Cre) exhibits reduced callus size and new bone volume. Gene expression data analysis revealed that the expression of several collagens, integrins and cell adhesion molecules were downregulated in periosteum-derived progenitor cells (PDCs) from AR-/Y;Prrx1::Cre mice. Mechanistically, androgens-AR signaling activates the AR/ARA55/FAK complex and induces the collagen-integrin α2β1 gene expression that is required for promoting the AR-mediated PDCs migration. Using mouse cortical-defect and femoral graft transplantation models, we proved that elimination of AR in periosteum of host mice impairs fracture healing, regardless of AR existence of transplanted donor graft. While testosterone implanted scaffolds failed to complete callus bridging across the fracture gap in AR-/Y;Prrx1::Cre mice, cell-based transplantation using DPCs re-expressing AR could lead to rescue bone repair. In conclusion, targeting androgen/AR axis in the periosteum may provide a novel therapy approach to improve fracture healing.