- Browse by Subject
Browsing by Subject "Androgen"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item Association Between Asthma and Reduced Androgen Receptor Expression in Airways(Endocrine Society, 2022-03-21) McManus, Jeffrey M.; Gaston, Benjamin; Zein, Joe; Sharifi, Nima; Pediatrics, School of MedicineA growing body of evidence suggests a role for androgens in asthma and asthma control. This includes a sex discordance in disease rates that changes with puberty, experiments in mice showing androgens reduce airway inflammation, and a reported association between airway androgen receptor (AR) expression and disease severity in asthma patients. We set out to determine whether airway AR expression differs between asthma patients and healthy controls. We analyzed data from 8 publicly available data sets with gene expression profiling from airway epithelial cells obtained both from asthma patients and control individuals. We found that airway AR expression was lower in asthma patients than in controls in both sexes, and that having AR expression below the median in the pooled data set was associated with substantially elevated odds of asthma vs having AR expression above the median (odds ratio 4.89; 95% CI, 3.13-7.65, P < .0001). In addition, our results suggest that whereas the association between asthma and AR expression is present in both sexes in most of the age range analyzed, the association may be absent in prepubescent children and postmenopausal women. Our results add to the existing body of evidence suggesting a role for androgens in asthma control.Item Dihydrotestosterone suppression of proinflammatory gene expression in human meibomian gland epithelial cells(Elsevier, 2020-04) Sahin, Afsun; Liu, Yang; Kam, Wendy R.; Darabad, Raheleh Rahimi; Sullivan, David A.; Medicine, School of MedicinePurpose: We discovered that dihydrotestosterone (DHT) decreases the ability of lipopolysaccharide, a bacterial toxin, to stimulate the secretion of leukotriene B4, a potent proinflammatory mediator, by immortalized human meibomian gland epithelial cells (IHMGECs). We hypothesize that this hormone action reflects an androgen suppression of proinflammatory gene activity in these cells. Our goal was to test this hypothesis. For comparison, we also examined whether DHT treatment elicits the same effect in immortalized human corneal (IHC) and conjunctival (IHConj) ECs. Methods: Differentiated cells were cultured in media containing vehicle or 10 nM DHT. Cells (n = 3 wells/treatment group) were then processed for RNA isolation and the analysis of gene expression by using Illumina BeadChips, background subtraction, cubic spline normalization and Geospiza software. Results: Our results demonstrate that DHT significantly suppressed the expression of numerous immune-related genes in HMGECs, such as those associated with antigen processing and presentation, innate and adaptive immune responses, chemotaxis, and cytokine production. DHT also enhanced the expression of genes for defensin β1, IL-1 receptor antagonist, and the anti-inflammatory serine peptidase inhibitor, Kazal type 5. In contrast, DHT had no effect on proinflammatory gene expression in HCECs, and significantly increased 33 gene ontologies linked to the immune system in HConjECs. Conclusions: Our findings support our hypothesis that androgens suppress proinflammatory gene expression in IHMGECs. This hormone effect may contribute to the typical absence of inflammation within the human meibomian gland.Item Stop calling it a choice: Biological factors drive homosexuality(The Conversation US, Inc., 2019-09-03) Sullivan, BillItem Teenage acne and cancer risk in U.S. women: A prospective cohort study(John Wiley & Sons, Inc., 2015-05-15) Zhang, Mingfeng; Qureshi, Abrar A.; Fortner, Renée T.; Hankinson, Susan E.; Wei, Qingyi; Wang, Li-E; Eliassen, A. Heather; Willett, Walter C.; Hunter, David J.; Han, Jiali; Department of Epidemiology, Richard M. Fairbanks School of Public HealthBACKGROUND: Acne reflects hormone imbalance and is a key component of several systemic diseases. We hypothesized that diagnosis of acne as a teenager might predict subsequent risk of hormone-related cancers. METHODS: We followed 99,128 female nurses in the Nurses' Health Study II cohort for 20 years (1989-2009) and used Cox proportional hazards models to estimate the hazard ratios (HRs) of 8 specific cancers (breast, thyroid, colorectal, ovarian, cervical, and endometrial cancers, melanoma, and non-Hodgkin lymphoma) for women with a history of severe teenage acne. RESULTS: After thoroughly adjusting for the previously known risk factors for each cancer, we found that among women with a history of severe teenage acne, the relative risk increased, with a multivariable-adjusted HR of 1.44 (95% confidence interval [CI], 1.03-2.01) for melanoma. We replicated this association in an independent melanoma case-control study of 930 cases and 1026 controls (multivariable-adjusted odds ratio, 1.27; 95% CI, 1.03-1.56). We also found that in both studies the individuals with teenage acne were more likely to have moles (52.7% vs 50.1%, P < .001 in the cohort study; and 55.2% vs 45.1%, P = .004 in the case-control study). CONCLUSIONS: Our findings suggest that a history of teenage acne might be a novel risk factor for melanoma independent from the known factors, which supports a need for continued investigation of these relationships.Item Testosterone does not shorten action potential duration in Langendorff perfused rabbit ventricles(Elsevier, 2023-10) Ueoka, Akira; Sung, Yen-Ling; Liu, Xiao; Rosenberg, Carine; Chen, Zhenhui; Everett, Thomas H, IV; Rubart, Michael; Tisdale, James E.; Chen, Peng-Sheng; Pediatrics, School of MedicineBackground: Women have longer baseline QT intervals than men. Because previous studies showed that testosterone and 5α-dihydrotestosterone shorten the ventricular action potential duration (APD) in animal models, differential testosterone concentrations may account for the sex differences in QT interval. Objective: The purpose of this study was to test the hypothesis that testosterone shortens the APD in Langendorff-perfused rabbit ventricles. Methods: We performed optical mapping studies in hearts with or without testosterone administration. Acute studies included 26 hearts using 2 different protocols, including 17 without and 9 with atrioventricular (AV) block. For chronic studies, we implanted testosterone pellets subcutaneously in 7 female rabbits for 2-3 weeks before optical mapping studies during complete AV block. Six rabbits without pellet implantation served as controls. Results: The hearts in the acute studies were paced with a pacing cycle length (PCL) of 200-300 ms and mapped at baseline and after administration of 1 nM, 10 nM, 100 nM, and 3 μM of testosterone. There was no shortening of APD80 at any PCL. Instead, a lengthening of APD80 was noted at higher concentrations. There were no sex differences in testosterone responses. In chronic studies, heart rates were 136 ± 5 bpm before and 148 ± 9 bpm after (P = .10) while QTc intervals were 314 ± 9 ms before and 317 ± 99 ms after (P = .69) testosterone pellet implantation, respectively. Overall, ventricular APD80 in the pellet group was longer than in the control group at 300- to 700-ms PCL. Conclusion: Testosterone does not shorten ventricular repolarization in rabbit hearts.Item Testosterone does not shorten action potential duration in Langendorff-perfused rabbit ventricles(Elsevier, 2022-11) Ueoka, Akira; Sung, Yen-Ling; Liu , Xiao; Rosenberg, Carine; Chen, Zhenhui; Everett, Thomas H., IV; Rubart , Michael; Tisdale, James E.; Chen, Peng-Sheng; Medicine, School of MedicineBackground Women have longer baseline QT intervals than men. Because previous studies showed that testosterone and 5α-dihydrotestosterone shorten the ventricular action potential duration (APD) in animal models, differential testosterone concentrations may account for the sex differences in QT interval. Objective The purpose of this study was to test the hypothesis that testosterone shortens the APD in Langendorff-perfused rabbit ventricles. Methods We performed optical mapping studies in hearts with or without testosterone administration. Acute studies included 26 hearts using 2 different protocols, including 17 without and 9 with atrioventricular (AV) block. For chronic studies, we implanted testosterone pellets subcutaneously in 7 female rabbits for 2–3 weeks before optical mapping studies during complete AV block. Six rabbits without pellet implantation served as controls. Results The hearts in the acute studies were paced with a pacing cycle length (PCL) of 200–300 ms and mapped at baseline and after administration of 1 nM, 10 nM, 100 nM, and 3 μM of testosterone. There was no shortening of APD80 at any PCL. Instead, a lengthening of APD80 was noted at higher concentrations. There were no sex differences in testosterone responses. In chronic studies, heart rates were 136 ± 5 bpm before and 148 ± 9 bpm after (P = .10) while QTc intervals were 314 ± 9 ms before and 317 ± 99 ms after (P = .69) testosterone pellet implantation, respectively. Overall, ventricular APD80 in the pellet group was longer than in the control group at 300- to 700-ms PCL. Conclusion Testosterone does not shorten ventricular repolarization in rabbit hearts.