- Browse by Subject
Browsing by Subject "Analytical models"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Nothing Wasted: Full Contribution Enforcement in Federated Edge Learning(IEEE Xplore, 2021-10) Hu, Qin; Wang, Shengling; Xiong, Zehui; Cheng, Xiuzhen; Computer and Information Science, School of ScienceThe explosive amount of data generated at the network edge makes mobile edge computing an essential technology to support real-time applications, calling for powerful data processing and analysis provided by machine learning (ML) techniques. In particular, federated edge learning (FEL) becomes prominent in securing the privacy of data owners by keeping the data locally used to train ML models. Existing studies on FEL either utilize in-process optimization or remove unqualified participants in advance. In this paper, we enhance the collaboration from all edge devices in FEL to guarantee that the ML model is trained using all available local data to accelerate the learning process. To that aim, we propose a collective extortion (CE) strategy under the imperfect-information multi-player FEL game, which is proved to be effective in helping the server efficiently elicit the full contribution of all devices without worrying about suffering from any economic loss. Technically, our proposed CE strategy extends the classical extortion strategy in controlling the proportionate share of expected utilities for a single opponent to the swiftly homogeneous control over a group of players, which further presents an attractive trait of being impartial for all participants. Both theoretical analysis and experimental evaluations validate the effectiveness and fairness of our proposed scheme.Item Weakly-Supervised Cross-Domain Adaptation for Endoscopic Lesions Segmentation(IEEE, 2021) Dong, Jiahua; Cong, Yang; Sun, Gan; Yang, Yunsheng; Xu, Xiaowei; Ding, Zhengming; Computer Information and Graphics Technology, Purdue School of Engineering and TechnologyWeakly-supervised learning has attracted growing research attention on medical lesions segmentation due to significant saving in pixel-level annotation cost. However, 1) most existing methods require effective prior and constraints to explore the intrinsic lesions characterization, which only generates incorrect and rough prediction; 2) they neglect the underlying semantic dependencies among weakly-labeled target enteroscopy diseases and fully-annotated source gastroscope lesions, while forcefully utilizing untransferable dependencies leads to the negative performance. To tackle above issues, we propose a new weakly-supervised lesions transfer framework, which can not only explore transferable domain-invariant knowledge across different datasets, but also prevent the negative transfer of untransferable representations. Specifically, a Wasserstein quantified transferability framework is developed to highlight wide-range transferable contextual dependencies, while neglecting the irrelevant semantic characterizations. Moreover, a novel self-supervised pseudo label generator is designed to equally provide confident pseudo pixel labels for both hard-to-transfer and easy-to-transfer target samples. It inhibits the enormous deviation of false pseudo pixel labels under the self-supervision manner. Afterwards, dynamically-searched feature centroids are aligned to narrow category-wise distribution shift. Comprehensive theoretical analysis and experiments show the superiority of our model on the endoscopic dataset and several public datasets.