- Browse by Subject
Browsing by Subject "Amyloid-β"
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item Altered bile acid profile in mild cognitive impairment and Alzheimer's disease: Relationship to neuroimaging and CSF biomarkers(Elsevier, 2019-02) Nho, Kwangsik; Kueider-Paisley, Alexandra; MahmoudianDehkordi, Siamak; Arnold, Matthias; Risacher, Shannon L.; Louie, Gregory; Blach, Colette; Baillie, Rebecca; Han, Xianlin; Kastenmüller, Gabi; Jia, Wei; Xie, Guoxiang; Ahmad, Shahzad; Hankemeier, Thomas; van Duijn, Cornelia M.; Trojanowski, John Q.; Shaw, Leslie M.; Weiner, Michael W.; Doraiswamy, P. Murali; Saykin, Andrew J.; Kaddurah-Daouk, Rima; Radiology and Imaging Sciences, School of MedicineINTRODUCTION: Bile acids (BAs) are the end products of cholesterol metabolism produced by human and gut microbiome co-metabolism. Recent evidence suggests gut microbiota influence pathological features of Alzheimer's disease (AD) including neuroinflammation and amyloid-β deposition. METHOD: Serum levels of 20 primary and secondary BA metabolites from the AD Neuroimaging Initiative (n = 1562) were measured using targeted metabolomic profiling. We assessed the association of BAs with the "A/T/N" (amyloid, tau, and neurodegeneration) biomarkers for AD: cerebrospinal fluid (CSF) biomarkers, atrophy (magnetic resonance imaging), and brain glucose metabolism ([18F]FDG PET). RESULTS: Of 23 BAs and relevant calculated ratios after quality control procedures, three BA signatures were associated with CSF Aβ1-42 ("A") and three with CSF p-tau181 ("T") (corrected P < .05). Furthermore, three, twelve, and fourteen BA signatures were associated with CSF t-tau, glucose metabolism, and atrophy ("N"), respectively (corrected P < .05). DISCUSSION: This is the first study to show serum-based BA metabolites are associated with "A/T/N" AD biomarkers, providing further support for a role of BA pathways in AD pathophysiology. Prospective clinical observations and validation in model systems are needed to assess causality and specific mechanisms underlying this association.Item Developing Effective Alzheimer's Disease Therapies: Clinical Experience and Future Directions(IOS Press, 2019) Elmaleh, David R.; Farlow, Martin R.; Conti, Peter S.; Tompkins, Ronald G.; Kundakovic, Ljiljana; Tanzi, Rudolph E.; Neurology, School of MedicineAlzheimer's disease (AD) clinical trials, focused on disease modifying drugs and conducted in patients with mild to moderate AD, as well as prodromal (early) AD, have failed to reach efficacy endpoints in improving cognitive function in most cases to date or have been terminated due to adverse events. Drugs that have reached clinical stage were reviewed using web resources (such as clinicaltrials.gov, alzforum.org, company press releases, and peer reviewed literature) to identify late stage (Phase II and Phase III) efficacy clinical trials and summarize reasons for their failure. For each drug, only the latest clinical trials and ongoing trials that aimed at improving cognitive function were included in the analysis. Here we highlight the potential reasons that have hindered clinical success, including clinical trial design and choice of outcome measures, heterogeneity of patient populations, difficulties in diagnosing and staging the disease, drug design, mechanism of action, and toxicity related to the long-term use. We review and suggest approaches for AD clinical trial design aimed at improving our ability to identify novel therapies for this devastating disease.Item Diffuse Lewy Body Disease and Alzheimer Disease: Neuropathologic Phenotype Associated With the PSEN1 p.A396T Mutation(Oxford, 2019-06-05) Gondim, Dibson D; Oblak, Adrian; Murrell, Jill R; Richardson, Rose; Epperson, Francine; Ross, Owen A; Ghetti, Bernardino; Pathology and Laboratory Medicine, School of MedicineIn sporadic and dominantly inherited Alzheimer disease (AD), aggregation of both tau and α-synuclein may occur in neurons. Aggregates of either protein occur separately or coexist in the same neuron. It is not known whether the coaggregation of tau and α-synuclein in dominantly inherited AD occurs in association with specific mutations of the APP, PSEN1, or PSEN2 genes. The aim of this study was to provide the first characterization of the neuropathologic phenotype associated with the PSEN1 p.A396T mutation in a man who was clinically diagnosed as having AD, but for whom the PSEN1 mutation was found postmortem. The proband, who was 56 years old when cognitive impairment first manifested, died at 67 years of age. Neuropathologically, 3 proteinopathies were present in the brain. Widespread α-synuclein-immunopositive neuronal inclusions suggested a diagnosis of diffuse Lewy body disease (DLBD), while severe and widespread tau and amyloid-β pathologies confirmed the clinical diagnosis of AD. Immunohistochemistry revealed the coexistence of tau and α-synuclein aggregates in the same neuron. Neuropathologic and molecular studies in brains of carriers of the PSEN1 p.A396T mutation or other PSEN1 or PSEN2 mutations associated with the coexistence of DLBD and AD are needed to clarify whether tau and α-synuclein proteinopathies occur independently or whether a relationship exists between α-synuclein and tau that might explain the mechanisms of coaggregation.Item Distinct Heterocyclic Moieties Govern the Selectivity of Thiophene-Vinylene-Based Ligands Towards Aβ or Tau Pathology in Alzheime’s Disease(Wiley, 2023) Björk, Linnea; Shirani, Hamid; Todarwal, Yogesh; Linares, Mathieu; Vidal, Ruben; Ghetti, Bernardino; Norman, Patrick; Klingstedt, Therése; Nilsson, K. Peter R.; Pathology and Laboratory Medicine, School of MedicineDistinct aggregated proteins are correlated with numerous neurodegenerative diseases and the development of ligands that selectively detect these pathological hallmarks is vital. Recently, the synthesis of thiophene-based optical ligands, denoted bi-thiophene-vinyl-benzothiazoles (bTVBTs), that could be utilized for selective assignment of tau pathology in brain tissue with Alzheime's disease (AD) pathology, was reported. Herein, we investigate the ability of these ligands to selectively distinguish tau deposits from aggregated amyloid-β (Aβ), the second AD associated pathological hallmark, when replacing the terminal thiophene moiety with other heterocyclic motifs. The selectivity for tau pathology was reduced when introducing specific heterocyclic motifs, verifying that specific molecular interactions between the ligands and the aggregates are necessary for selective detection of tau deposits. In addition, ligands having certain heterocyclic moieties attached to the central thiophene-vinylene building block displayed selectivity to aggregated Aβ pathology. Our findings provide chemical insights for the development of ligands that can distinguish between aggregated proteinaceous species consisting of different proteins and might also aid in creating novel agents for clinical imaging of tau pathology in AD.Item Dual-ligand fluorescence microscopy enables chronological and spatial histological assignment of distinct amyloid-β deposits(Elsevier, 2025) Klingstedt, Therése; Shirani, Hamid; Parvin, Farjana; Nyström, Sofie; Hammarström, Per; Graff, Caroline; Ingelsson, Martin; Vidal, Ruben; Ghetti, Bernardino; Sehlin, Dag; Syvänen, Stina; Nilsson, K. Peter. R.; Pathology and Laboratory Medicine, School of MedicineDifferent types of deposits comprised of amyloid-β (Aβ) peptides are one of the pathological hallmarks of Alzheimer's disease (AD) and novel methods that enable identification of a diversity of Aβ deposits during the AD continuum are essential for understanding the role of these aggregates during the pathogenesis. Herein, different combinations of five fluorescent thiophene-based ligands were used for detection of Aβ deposits in brain tissue sections from transgenic mouse models with aggregated Aβ pathology, as well as brain tissue sections from patients affected by sporadic or dominantly inherited AD. When analyzing the sections with fluorescence microscopy, distinct ligand staining patterns related to the transgenic mouse model or to the age of the mice were observed. Likewise, specific staining patterns of different Aβ deposits were revealed for sporadic versus dominantly inherited AD, as well as for distinct brain regions in sporadic AD. Thus, by using dual-staining protocols with multiple combinations of fluorescent ligands, a chronological and spatial histological designation of different Aβ deposits could be achieved. This study demonstrates the potential of our approach for resolving the role and presence of distinct Aβ aggregates during the AD continuum and pinpoints the necessity of using multiple ligands to obtain an accurate assignment of different Aβ deposits in the neuropathological evaluation of AD, as well as when evaluating therapeutic strategies targeting Aβ aggregates.Item Genome-wide transcriptome analysis identifies novel dysregulated genes implicated in Alzheimer's pathology(Wiley, 2020-08-05) Nho, Kwangsik; Nudelman, Kelly; Allen, Mariet; Hodges, Angela; Kim, Sungeun; Risacher, Shannon L.; Apostolova, Liana G.; Lin, Kuang; Lunnon, Katie; Wang, Xue; Burgess, Jeremy D.; Ertekin-Taner, Nilüfer; Petersen, Ronald C.; Wang, Lisu; Qi, Zhenhao; He, Aiqing; Neuhaus, Isaac; Patel, Vishal; Foroud, Tatiana; Faber, Kelley M.; Lovestone, Simon; Simmons, Andrew; Weiner, Michael W.; Saykin, Andrew J.; Radiology and Imaging Sciences, School of MedicineINTRODUCTION: Abnormal gene expression patterns may contribute to the onset and progression of late-onset Alzheimer’s disease (LOAD). METHODS: We performed transcriptome-wide meta-analysis (N=1,440) of blood-based microarray gene expression profiles as well as neuroimaging and CSF endophenotype analysis. RESULTS: We identified and replicated five genes (CREB5, CD46, TMBIM6, IRAK3, and RPAIN) as significantly dysregulated in LOAD. The most significantly altered gene, CREB5, was also associated with brain atrophy and increased amyloid-β accumulation, especially in the entorhinal cortex region. cis-eQTL mapping analysis of CREB5 detected five significant associations (p<5x10−8), where rs56388170 (most significant) was also significantly associated with global cortical amyloid-β (Aβ) deposition measured by [18F]Florbetapir PET and CSF Aβ1-42. DISCUSSION: RNA from peripheral blood indicated a differential gene expression pattern in LOAD. Genes identified have been implicated in biological processes relevant to AD. CREB, in particular, plays a key role in nervous system development, cell survival, plasticity and learning and memory.Item Global neuropathologic severity of Alzheimer's disease and locus coeruleus vulnerability influences plasma phosphorylated tau levels(Springer, 2022-12-27) Murray, Melissa E.; Moloney, Christina M.; Kouri, Naomi; Syrjanen, Jeremy A.; Matchett, Billie J.; Rothberg, Darren M.; Tranovich, Jessica F.; Hicks Sirmans, Tiffany N.; Wiste, Heather J.; Boon, Baayla D. C.; Nguyen, Aivi T.; Reichard, R. Ross; Dickson, Dennis W.; Lowe, Val J.; Dage, Jeffrey L.; Petersen, Ronald C.; Jack, Clifford R., Jr.; Knopman , David S.; Vemuri, Prashanthi; Graff-Radford, Jonathan; Mielke, Michelle M.; Neurology, School of MedicineBackground Advances in ultrasensitive detection of phosphorylated tau (p-tau) in plasma has enabled the use of blood tests to measure Alzheimer’s disease (AD) biomarker changes. Examination of postmortem brains of participants with antemortem plasma p-tau levels remains critical to understanding comorbid and AD-specific contribution to these biomarker changes. Methods We analyzed 35 population-based Mayo Clinic Study of Aging participants with plasma p-tau at threonine 181 and threonine 217 (p-tau181, p-tau217) available within 3 years of death. Autopsied participants included cognitively unimpaired, mild cognitive impairment, AD dementia, and non-AD neurodegenerative disorders. Global neuropathologic scales of tau, amyloid-β, TDP-43, and cerebrovascular disease were examined. Regional digital pathology measures of tau (phosphorylated threonine 181 and 217 [pT181, pT217]) and amyloid-β (6F/3D) were quantified in hippocampus and parietal cortex. Neurotransmitter hubs reported to influence development of tangles (nucleus basalis of Meynert) and amyloid-β plaques (locus coeruleus) were evaluated. Results The strongest regional associations were with parietal cortex for tau burden (p-tau181 R = 0.55, p = 0.003; p-tau217 R = 0.66, p < 0.001) and amyloid-β burden (p-tau181 R = 0.59, p < 0.001; p-tau217 R = 0.71, p < 0.001). Linear regression analysis of global neuropathologic scales explained 31% of variability in plasma p-tau181 (Adj. R2 = 0.31) and 59% in plasma p-tau217 (Adj. R2 = 0.59). Neither TDP-43 nor cerebrovascular disease global scales independently contributed to variability. Global scales of tau pathology (β-coefficient = 0.060, p = 0.016) and amyloid-β pathology (β-coefficient = 0.080, p < 0.001) independently predicted plasma p-tau217 when modeled together with co-pathologies, but only amyloid-β (β-coefficient = 0.33, p = 0.021) significantly predicted plasma p-tau181. While nucleus basalis of Meynert neuron count/mm2 was not associated with plasma p-tau levels, a lower locus coeruleus neuron count/mm2 was associated with higher plasma p-tau181 (R = -0.50, p = 0.007) and higher plasma p-tau217 (R = -0.55, p = 0.002). Cognitive scores (Adj. R2 = 0.25–0.32) were predicted by the global tau scale, but not by the global amyloid-β scale or plasma p-tau when modeled simultaneously. Conclusions Higher soluble plasma p-tau levels may be the result of an intersection between insoluble deposits of amyloid-β and tau accumulation in brain, and may be associated with locus coeruleus degeneration.Item Plasma markers predict changes in amyloid, tau, atrophy and cognition in non-demented subjects(Oxford University Press, 2021) Pereira, Joana B.; Janelidze, Shorena; Stomrud, Erik; Palmqvist, Sebastian; van Westen, Danielle; Dage, Jeffrey L.; Mattsson-Carlgren, Niklas; Hansson, Oskar; Neurology, School of MedicineIt is currently unclear whether plasma biomarkers can be used as independent prognostic tools to predict changes associated with early Alzheimer's disease. In this study, we sought to address this question by assessing whether plasma biomarkers can predict changes in amyloid load, tau accumulation, brain atrophy and cognition in non-demented individuals. To achieve this, plasma amyloid-β 42/40 (Aβ42/40), phosphorylated-tau181, phosphorylated-tau217 and neurofilament light were determined in 159 non-demented individuals, 123 patients with Alzheimer's disease dementia and 35 patients with a non-Alzheimer's dementia from the Swedish BioFINDER-2 study, who underwent longitudinal amyloid (18F-flutemetamol) and tau (18F-RO948) PET, structural MRI (T1-weighted) and cognitive testing. Our univariate linear mixed effect models showed there were several significant associations between the plasma biomarkers with imaging and cognitive measures. However, when all biomarkers were included in the same multivariate linear mixed effect models, we found that increased longitudinal amyloid-PET signals were independently predicted by low baseline plasma Aβ42/40 (P = 0.012), whereas increased tau-PET signals, brain atrophy and worse cognition were independently predicted by high plasma phosphorylated-tau217 (P < 0.004). These biomarkers performed equally well or better than the corresponding biomarkers measured in the CSF. In addition, they showed a similar performance to binary plasma biomarker values defined using the Youden index, which can be more easily implemented in the clinic. In addition, plasma Aβ42/40 and phosphorylated-tau217 did not predict longitudinal changes in patients with a non-Alzheimer's neurodegenerative disorder. In conclusion, our findings indicate that plasma Aβ42/40 and phosphorylated-tau217 could be useful in clinical practice, research and drug development as prognostic markers of future Alzheimer's disease pathology.Item Proteophenes - Amino Acid Functionalized Thiophene-based Fluorescent Ligands for Visualization of Protein Deposits in Tissue Sections with Alzheimer's Disease Pathology(Wiley, 2022) Björk, Linnea; Bäck, Marcus; Lantz, Linda; Ghetti, Bernardino; Vidal, Ruben; Klingstedt, Therése; Nilsson, K. Peter R.; Pathology and Laboratory Medicine, School of MedicineProtein deposits composed of specific proteins or peptides are associated with several neurodegenerative diseases and fluorescent ligands able to detect these pathological hallmarks are vital. Here, we report the synthesis of a class of thiophene-based ligands, denoted proteophenes, with different amino acid side-chain functionalities along the conjugated backbone, which display selectivity towards specific disease-associated protein aggregates in tissue sections with Alzheimer's disease (AD) pathology. The selectivity of the ligands towards AD associated pathological hallmarks, such as aggregates of the amyloid-β (Aβ) peptide or tau filamentous inclusions, was highly dependent on the chemical nature of the amino acid functionality, as well as on the location of the functionality along the pentameric thiophene backbone. Finally, the concept of synthesizing donor-acceptor-donor proteophenes with distinct photophysical properties was shown. Our findings provide the structural and functional basis for the development of new thiophene-based ligands that can be utilized for optical assignment of different aggregated proteinaceous species in tissue sections.Item Spatial transcriptomic patterns underlying amyloid-β and tau pathology are associated with cognitive dysfunction in Alzheimer’s disease(Elsevier, 2024) Yu, Meichen; Risacher, Shannon L.; Nho, Kwangsik T.; Wen, Qiuting; Oblak, Adrian L.; Unverzagt, Frederick W.; Apostolova, Liana G.; Farlow, Martin R.; Brosch, Jared R.; Clark, David G.; Wang, Sophia; Deardorff, Rachael; Wu, Yu-Chien; Gao, Sujuan; Sporns, Olaf; Saykin, Andrew J.; Alzheimer’s Disease Neuroimaging Initiative (ADNI); Radiology and Imaging Sciences, School of MedicineAmyloid-β (Aβ) and tau proteins accumulate within distinct neuronal systems in Alzheimer's disease (AD). Although it is not clear why certain brain regions are more vulnerable to Aβ and tau pathologies than others, gene expression may play a role. We study the association between brain-wide gene expression profiles and regional vulnerability to Aβ (gene-to-Aβ associations) and tau (gene-to-tau associations) pathologies by leveraging two large independent AD cohorts. We identify AD susceptibility genes and gene modules in a gene co-expression network with expression profiles specifically related to regional vulnerability to Aβ and tau pathologies in AD. In addition, we identify distinct biochemical pathways associated with the gene-to-Aβ and the gene-to-tau associations. These findings may explain the discordance between regional Aβ and tau pathologies. Finally, we propose an analytic framework, linking the identified gene-to-pathology associations to cognitive dysfunction in AD at the individual level, suggesting potential clinical implication of the gene-to-pathology associations.