ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Aminoacyl tRNA synthetase"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Aminoacyl tRNA synthetase complex interacting multifunctional protein 1 simultaneously binds Glutamyl-Prolyl-tRNA synthetase and scaffold protein aminoacyl tRNA synthetase complex interacting multifunctional protein 3 of the multi-tRNA synthetase complex
    (Elsevier, 2018-06) Schwarz, Margaret A.; Lee, Daniel D.; Bartlett, Seamus; IU School of Medicine
    Higher eukaryotes have developed extensive compartmentalization of amino acid (aa) - tRNA coupling through the formation of a multi-synthetase complex (MSC) that is composed of eight aa-tRNA synthetases (ARS) and three scaffold proteins: aminoacyl tRNA synthetase complex interacting multifunctional proteins (AIMP1, 2 and 3). Lower eukaryotes have a much smaller complex while yeast MSC consists of only two ARS (MetRS and GluRS) and one ARS cofactor 1 protein, Arc1p (Simos et al., 1996), the homolog of the mammalian AIMP1. Arc1p is reported to form a tripartite complex with GluRS and MetRS through association of the N-terminus GST-like domains (GST-L) of the three proteins (Koehler et al., 2013). Mammalian AIMP1 has no GST-L domain corresponding to Arc1p N-terminus. Instead, AIMP3, another scaffold protein of 18 kDa composed entirely of a GST-L domain, interacts with Methionyl-tRNA synthetase (MARS) (Quevillon et al., 1999) and Glutamyl-Prolyl-tRNA Synthetase (EPRS) (Cho et al., 2015). Here we report two new interactions between MSC members: AIMP1 binds to EPRS and AIMP1 binds to AIMP3. Interestingly, the interaction between AIMP1 and AIMP3 complex makes it the functional equivalent of a single Arc1p polypeptide in yeast. This interaction is not mapped to AIMP1 N-terminal coiled-coil domain, but rather requires an intact tertiary structure of the entire protein. Since AIMP1 also interacts with AIMP2, all three proteins appear to compose a core docking structure for the eight ARS in the MSC complex.
  • Loading...
    Thumbnail Image
    Item
    Translation Regulation of the Glutamyl-prolyl-tRNA Synthetase Gene EPRS through Bypass of Upstream Open Reading Frames with Noncanonical Initiation Codons
    (American Society for Biochemistry and Molecular Biology, 2016-05-13) Young, Sara K.; Baird, Thomas D.; Wek, Ronald C.; Department of Biochemistry and Molecular Biology, School of Medicine
    In the integrated stress response, phosphorylation of eIF2α (eIF2α-P) reduces protein synthesis while concomitantly promoting preferential translation of specific transcripts associated with stress adaptation. Translation of the glutamyl-prolyl-tRNA synthetase gene EPRS is enhanced in response to eIF2α-P. To identify the underlying mechanism of translation control, we employed biochemical approaches to determine the regulatory features by which upstream ORFs (uORFs) direct downstream translation control and expression of the EPRS coding region. Our findings reveal that translation of two inhibitory uORFs encoded by noncanonical CUG and UUG initiation codons in the EPRS mRNA 5'-leader serve to dampen levels of translation initiation at the EPRS coding region. By a mechanism suggested to involve increased translation initiation stringency during stress-induced eIF2α-P, we observed facilitated ribosome bypass of these uORFs, allowing for increased translation of the EPRS coding region. Importantly, EPRS protein expression is enhanced through this preferential translation mechanism in response to multiple known activators of eIF2α-P and likely serves to facilitate stress adaptation in response to a variety of cellular stresses. The rules presented here for the regulated ribosome bypass of noncanonical initiation codons in the EPRS 5'-leader add complexity into the nature of uORF-mediated translation control mechanisms during eIF2α-P and additionally illustrate the roles that previously unexamined uORFs with noncanonical initiation codons can play in modulating gene expression.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University