- Browse by Subject
Browsing by Subject "Amino acid"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A Member of an Ancient Family of Bacterial Amino Acids Transporters Contributes to Chlamydia Nutritional Virulence and Immune Evasion(American Society for Microbiology, 2023) Banerjee, Arkaprabha; Sun, Yuan; Muramatsu, Matthew K.; Toh, Evelyn; Nelson, David E.; Microbiology and Immunology, School of MedicineMany obligate intracellular bacteria, including members of the genus Chlamydia, cannot synthesize a variety of amino acids de novo and acquire these from host cells via largely unknown mechanisms. Previously, we determined that a missense mutation in ctl0225, a conserved Chlamydia open reading frame of unknown function, mediated sensitivity to interferon gamma. Here, we show evidence that CTL0225 is a member of the SnatA family of neutral amino acid transporters that contributes to the import of several amino acids into Chlamydia cells. Further, we show that CTL0225 orthologs from two other distantly related obligate intracellular pathogens (Coxiella burnetii and Buchnera aphidicola) are sufficient to import valine into Escherichia coli. We also show that chlamydia infection and interferon exposure have opposing effects on amino acid metabolism, potentially explaining the relationship between CTL0225 and interferon sensitivity. Overall, we show that phylogenetically diverse intracellular pathogens use an ancient family of amino acid transporters to acquire host amino acids and provide another example of how nutritional virulence and immune evasion can be linked in obligate intracellular pathogens.Item Evaluating Metabolic Pathways and Biofilm Formation in Stenotrophomonas maltophilia(American Society for Microbiology, 2022) Isom, Cierra M.; Fort, Blake; Anderson, Gregory G.; Biology, School of ScienceStenotrophomonas maltophilia has recently arisen as a prominent nosocomial pathogen because of its high antimicrobial resistance and ability to cause chronic respiratory infections. Often the infections are worsened by biofilm formation which enhances antibiotic tolerance. We have previously found that mutation of the gpmA gene, encoding the glycolytic enzyme phosphoglycerate mutase, impacts the formation of this biofilm on biotic and abiotic surfaces at early time points. This finding, indicating an association between carbon source and biofilm formation, led us to hypothesize that metabolism would influence S. maltophilia biofilm formation and planktonic growth. In the present study, we tested the impact of various growth substrates on biofilm levels and growth kinetics to determine metabolic requirements for these processes. We found that S. maltophilia wild type preferred amino acids versus glucose for planktonic and biofilm growth and that gpmA deletion inhibited growth in amino acids. Furthermore, supplementation of the ΔgpmA strain by glucose or ribose phenotypically complemented growth defects. These results suggest that S. maltophilia shuttles amino acid carbon through gluconeogenesis to an undefined metabolic pathway supporting planktonic and biofilm growth. Further evaluation of these metabolic pathways might reveal novel metabolic activities of this pathogen. IMPORTANCE: Stenotrophomonas maltophilia is a prominent opportunistic pathogen that often forms biofilms during infection. However, the molecular mechanisms of virulence and biofilm formation are poorly understood. The glycolytic enzyme phosphoglycerate mutase appears to play a role in biofilm formation, and we used a mutant in its gene (gpmA) to probe the metabolic circuitry potentially involved in biofilm development. The results of our study indicate that S. maltophilia displays unique metabolic activities, which could be exploited for inhibiting growth and biofilm formation of this pathogen.Item Human Leukocyte Antigen B*14:01 and B*35:01 Are Associated With Trimethoprim-Sulfamethoxazole Induced Liver Injury(Wolters Kluwer, 2021) Li, Yi-Ju; Phillips, Elizabeth J.; Dellinger, Andrew; Nicoletti, Paola; Schutte, Ryan; Li, Danmeng; Ostrov, David A.; Fontana, Robert J.; Watkins, Paul B.; Stolz, Andrew; Daly, Ann K.; Aithal, Guruprasad P.; Barnhart, Huiman; Chalasani, Naga; Drug-induced Liver Injury Network (DILIN); Medicine, School of MedicineBackground and aims: Trimethoprim (TMP)-sulfamethoxazole (SMX) is an important cause of idiosyncratic drug-induced liver injury (DILI), but its genetic risk factors are not well understood. This study investigated the relationship between variants in the human leukocyte antigen (HLA) class 1 and 2 genes and well-characterized cases of TMP-SMX DILI. Approach and results: European American and African American persons with TMP-SMX DILI were compared with respective population controls. HLA sequencing was performed by Illumina MiSeq (Illumina, San Diego, CA) for cases. The HLA genotype imputation with attribute bagging program was used to impute HLA alleles for controls. The allele frequency difference between case patients and controls was tested by Fisher's exact tests for each ethnic group. For European Americans, multivariable logistic regression with Firth penalization was used to test the HLA allelic effect after adjusting for age and the top two principal components. Molecular docking was performed to assess HLA binding with TMP and SMX. The European American subset had 51 case patients and 12,156 controls, whereas the African American subset had 10 case patients and 5,439 controls. Four HLA alleles were significantly associated in the European American subset, with HLA-B*14:01 ranking at the top (odds ratio, 9.20; 95% confidence interval, 3.16, 22.35; P = 0.0003) after covariate adjustment. All carriers of HLA-B*14:01 with TMP-SMX DILI possessed HLA-C*08:02, another significant allele (P = 0.0026). This pattern was supported by HLA-B*14:01-HLA-C*08:02 haplotype association (P = 1.33 × 10-5 ). For the African American patients, HLA-B*35:01 had 2.8-fold higher frequency in case patients than in controls, with 5 of 10 patients carrying this allele. Molecular docking showed cysteine at position 67 in HLA-B*14:01 and phenylalanine at position 67 in HLA-B*35:01 to be the predictive binding sites for SMX metabolites. Conclusions: HLA-B*14:01 is associated with TMP-SMX DILI in European Americans, and HLA-B*35:01 may be a potential genetic risk factor for African Americans.Item Time-resolved analysis of amino acid stress identifies eIF2 phosphorylation as necessary to inhibit mTORC1 activity in liver(American Society for Biochemistry and Molecular Biology, 2018-04-06) Nikonorova, Inna A.; Mirek, Emily T.; Signore, Christina C.; Goudie, Michael P.; Wek, Ronald C.; Anthony, Tracy G.; Biochemistry and Molecular Biology, School of MedicineAmino acid availability is sensed by GCN2 (general control nonderepressible 2) and mechanistic target of rapamycin complex 1 (mTORC1), but how these two sensors coordinate their respective signal transduction events remains mysterious. In this study we utilized mouse genetic models to investigate the role of GCN2 in hepatic mTORC1 regulation upon amino acid stress induced by a single injection of asparaginase. We found that deletion of Gcn2 prevented hepatic phosphorylation of eukaryotic initiation factor 2α to asparaginase and instead unleashed mTORC1 activity. This change in intracellular signaling occurred within minutes and resulted in increased 5'-terminal oligopyrimidine mRNA translation instead of activating transcription factor 4 synthesis. Asparaginase also promoted hepatic mRNA levels of several genes which function as mTORC1 inhibitors, and these genes were blunted or blocked in the absence of Gcn2, but their timing could not explain the early discordant effects in mTORC1 signaling. Preconditioning mice with a chemical endoplasmic reticulum stress agent before amino acid stress rescued normal mTORC1 repression in the liver of Gcn2-/- mice but not in livers with both Gcn2 and the endoplasmic reticulum stress kinase, Perk, deleted. Furthermore, treating wildtype and Gcn2-/- mice with ISRIB, an inhibitor of PERK signaling, also failed to alter hepatic mTORC1 responses to asparaginase, although administration of ISRIB alone had an inhibitory GCN2-independent effect on mTORC1 activity. Taken together, the data show that activating transcription factor 4 is not required, but eukaryotic initiation factor 2α phosphorylation is necessary to prevent mTORC1 activation during amino acid stress.