- Browse by Subject
Browsing by Subject "Amino Acids"
Now showing 1 - 10 of 19
Results Per Page
Sort Options
Item Analysis of the inheritance of normal human serum amino acid levels by the twin study method(1975) Paul, Thomas DanielItem Chimeric derivatives of functionalized amino acids and α-aminoamides: compounds with anticonvulsant activity in seizure models and inhibitory actions on central, peripheral, and cardiac isoforms of voltage-gated sodium channels(Elsevier, 2015-07-01) Torregrosa, Robert; Yang, Xiao-Fang; Dustrude, Erik T.; Cummins, Theodore R.; Khanna, Rajesh; Kohn, Harold; Department of Psychiatry, IU School of MedicineSix novel 3″-substituted (R)-N-(phenoxybenzyl) 2-N-acetamido-3-methoxypropionamides were prepared and then assessed using whole-cell, patch-clamp electrophysiology for their anticonvulsant activities in animal seizure models and for their sodium channel activities. We found compounds with various substituents at the terminal aromatic ring that had excellent anticonvulsant activity. Of these compounds, (R)-N-4'-((3″-chloro)phenoxy)benzyl 2-N-acetamido-3-methoxypropionamide ((R)-5) and (R)-N-4'-((3″-trifluoromethoxy)phenoxy)benzyl 2-N-acetamido-3-methoxypropionamide ((R)-9) exhibited high protective indices (PI=TD50/ED50) comparable with many antiseizure drugs when tested in the maximal electroshock seizure test to mice (intraperitoneally) and rats (intraperitoneally, orally). Most compounds potently transitioned sodium channels to the slow-inactivated state when evaluated in rat embryonic cortical neurons. Treating HEK293 recombinant cells that expressed hNaV1.1, rNaV1.3, hNaV1.5, or hNaV1.7 with (R)-9 recapitulated the high levels of sodium channel slow inactivation.Item Contents of eight amino acids in ten regions of the medulla oblongata of the rat(1981) Siemers, Eric R.Item DescribePROT: database of amino acid-level protein structure and function predictions(Oxford University Press, 2021-01-08) Zhao, Bi; Katuwawala, Akila; Oldfield, Christopher J.; Dunker, A. Keith; Faraggi, Eshel; Gsponer, Jörg; Kloczkowski, Andrzej; Malhis, Nawar; Mirdita, Milot; Obradovic, Zoran; Söding, Johannes; Steinegger, Martin; Zhou, Yaoqi; Kurgan, Lukasz; Medicine, School of MedicineWe present DescribePROT, the database of predicted amino acid-level descriptors of structure and function of proteins. DescribePROT delivers a comprehensive collection of 13 complementary descriptors predicted using 10 popular and accurate algorithms for 83 complete proteomes that cover key model organisms. The current version includes 7.8 billion predictions for close to 600 million amino acids in 1.4 million proteins. The descriptors encompass sequence conservation, position specific scoring matrix, secondary structure, solvent accessibility, intrinsic disorder, disordered linkers, signal peptides, MoRFs and interactions with proteins, DNA and RNAs. Users can search DescribePROT by the amino acid sequence and the UniProt accession number and entry name. The pre-computed results are made available instantaneously. The predictions can be accesses via an interactive graphical interface that allows simultaneous analysis of multiple descriptors and can be also downloaded in structured formats at the protein, proteome and whole database scale. The putative annotations included by DescriPROT are useful for a broad range of studies, including: investigations of protein function, applied projects focusing on therapeutics and diseases, and in the development of predictors for other protein sequence descriptors. Future releases will expand the coverage of DescribePROT. DescribePROT can be accessed at http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/.Item The effect of vitamin deficiencies on the intestinal transport of amino acids and sugars(1965) Imami, Riazul HaqueItem The effects of acute ethanol on the levels of several amino acids in the CNS(1987) Gongwer, Melody A.Item GCN2-like eIF2α kinase manages the amino acid starvation response in Toxoplasma gondii(Elsevier, 2014-02) Konrad, Christian; Wek, Ronald C.; Sullivan, William J., Jr.; Department of Pharmacology and Toxicology, IU School of MedicineThe apicomplexan protozoan Toxoplasma gondii is a significant human and veterinary pathogen. As an obligate intracellular parasite, Toxoplasma depends on nutrients provided by the host cell and needs to adapt to limitations in available resources. In mammalian cells, translational regulation via GCN2 phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α) is a key mechanism for adapting to nutrient stress. Toxoplasma encodes two GCN2-like protein kinases, TgIF2K-C and TgIF2K-D. We previously showed that TgIF2K-D phosphorylates T. gondii eIF2α (TgIF2α) upon egress from the host cell, which enables the parasite to overcome exposure to the extracellular environment. However, the function of TgIF2K-C remained unresolved. To determine the functions of TgIF2K-C in the parasite, we cloned the cDNA encoding TgIF2K-C and generated knockout parasites of this TgIF2α kinase to study its function during the lytic cycle. The TgIF2K-C knockout did not exhibit a fitness defect compared with parental parasites. However, upon infection of human fibroblasts that were subsequently cultured in glutamine-free medium, the intracellular TgIF2K-C knockout parasites were impeded for induced phosphorylation of TgIF2α and showed a 50% reduction in the number of plaques formed compared with parental parasites. Furthermore, we found that this growth defect in glutamine-free media was phenocopied in parasites expressing only a non-phosphorylatable TgIF2α (TgIF2α-S71A), but not in a TgIF2K-D knockout. These studies suggest that Toxoplasma GCN2-like kinases TgIF2K-C and TgIF2K-D evolved to have distinct roles in adapting to changes in the parasite’s environment.