- Browse by Subject
Browsing by Subject "Ambient ionization"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Lipid and metabolite profiles of human brain tumors by desorption electrospray ionization-MS(PNAS Online, 2016-02-09) Jarmusch, Alan K.; Pirro, Valentina; Baird, Zane; Hattab, Eyas M.; Cohen-Gadol, Aaron A.; Cooks, R. Graham; Department of Pathology and Laboratory Medicine, IU School of MedicineExamination of tissue sections using desorption electrospray ionization (DESI)-MS revealed phospholipid-derived signals that differ between gray matter, white matter, gliomas, meningiomas, and pituitary tumors, allowing their ready discrimination by multivariate statistics. A set of lower mass signals, some corresponding to oncometabolites, including 2-hydroxyglutaric acid and N-acetyl-aspartic acid, was also observed in the DESI mass spectra, and these data further assisted in discrimination between brain parenchyma and gliomas. The combined information from the lipid and metabolite MS profiles recorded by DESI-MS and explored using multivariate statistics allowed successful differentiation of gray matter (n = 223), white matter (n = 66), gliomas (n = 158), meningiomas (n = 111), and pituitary tumors (n = 154) from 58 patients. A linear discriminant model used to distinguish brain parenchyma and gliomas yielded an overall sensitivity of 97.4% and a specificity of 98.5%. Furthermore, a discriminant model was created for tumor types (i.e., glioma, meningioma, and pituitary), which were discriminated with an overall sensitivity of 99.4% and a specificity of 99.7%. Unsupervised multivariate statistics were used to explore the chemical differences between anatomical regions of brain parenchyma and secondary infiltration. Infiltration of gliomas into normal tissue can be detected by DESI-MS. One hurdle to implementation of DESI-MS intraoperatively is the need for tissue freezing and sectioning, which we address by analyzing smeared biopsy tissue. Tissue smears are shown to give the same chemical information as tissue sections, eliminating the need for sectioning before MS analysis. These results lay the foundation for implementation of intraoperative DESI-MS evaluation of tissue smears for rapid diagnosis.Item Multivariate statistical differentiation of renal cell carcinomas based on lipidomic analysis by ambient ionization imaging mass spectrometry(Springer, 2010) Dill, Allison L.; Eberlin, Livia S.; Zheng, Cheng; Costa, Anthony B.; Ifa, Demian R.; Cheng, Liang; Masterson, Timothy A.; Koch, Michael O.; Vitek, Olga; Cooks, R. Graham; Pathology and Laboratory Medicine, School of MedicineDesorption electrospray ionization (DESI) mass spectrometry (MS) was used in an imaging mode to interrogate the lipid profiles of thin tissue sections of 11 sample pairs of human papillary renal cell carcinoma (RCC) and adjacent normal tissue and nine sample pairs of clear cell RCC and adjacent normal tissue. DESI-MS images showing the spatial distributions of particular glycerophospholipids (GPs) and free fatty acids in the negative ion mode were compared to serial tissue sections stained with hematoxylin and eosin (H&E). Increased absolute intensities as well as changes in relative abundance were seen for particular compounds in the tumor regions of the samples. Multivariate statistical analysis using orthogonal projection to latent structures treated partial least square discriminate analysis (PLS-DA) was used for visualization and classification of the tissue pairs using the full mass spectra as predictors. PLS-DA successfully distinguished tumor from normal tissue for both papillary and clear cell RCC with misclassification rates obtained from the validation set of 14.3% and 7.8%, respectively. It was also used to distinguish papillary and clear cell RCC from each other and from the combined normal tissues with a reasonable misclassification rate of 23%, as determined from the validation set. Overall DESI-MS imaging combined with multivariate statistical analysis shows promise as a molecular pathology technique for diagnosing cancerous and normal tissue on the basis of GP profiles.