- Browse by Subject
Browsing by Subject "Alzheimer’s Disease Neuroimaging Initiative (ADNI)"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item APOE effect on Alzheimer's disease biomarkers in older adults with significant memory concern(Elsevier, 2015-12) Risacher, Shannon L.; Kim, Sungeun; Nho, Kwangsik; Foroud, Tatiana; Shen, Li; Peterson, Ronald C.; Jack Jr, Clifford R.; Beckett, Laurel A.; Aisen, Paul S.; Koeppe, Robert A.; Jagust, William J.; Shaw, Leslie M.; Trojanowski, John Q.; Department of Radiology and Imaging Sciences, IU School of MedicineINTRODUCTION: This study assessed apolipoprotein E (APOE) ε4 carrier status effects on Alzheimer's disease imaging and cerebrospinal fluid (CSF) biomarkers in cognitively normal older adults with significant memory concerns (SMC). METHODS: Cognitively normal, SMC, and early mild cognitive impairment participants from Alzheimer's Disease Neuroimaging Initiative were divided by APOE ε4 carrier status. Diagnostic and APOE effects were evaluated with emphasis on SMC. Additional analyses in SMC evaluated the effect of the interaction between APOE and [(18)F]Florbetapir amyloid positivity on CSF biomarkers. RESULTS: SMC ε4+ showed greater amyloid deposition than SMC ε4-, but no hypometabolism or medial temporal lobe (MTL) atrophy. SMC ε4+ showed lower amyloid beta 1-42 and higher tau/p-tau than ε4-, which was most abnormal in APOE ε4+ and cerebral amyloid positive SMC. DISCUSSION: SMC APOE ε4+ show abnormal changes in amyloid and tau biomarkers, but no hypometabolism or MTL neurodegeneration, reflecting the at-risk nature of the SMC group and the importance of APOE in mediating this risk.Item Association of brain amyloidosis with the incidence and frequency of neuropsychiatric symptoms in ADNI: a multisite observational cohort study(BMJ Journals, 2019-12-18) Goukasian, Naira; Hwang, Kristy S.; Romero, Tamineh; Grotts, Jonathan; Do, Triet M.; Groh, Jenna R.; Bateman, Daniel R.; Apostolova, Liana G.; Neurology, School of MedicineObjective To investigate the relationship between amyloid burden and frequency of existing and incidence of new neuropsychiatric symptoms (NPS) in elderly with and without cognitive decline. Methods 275 cognitively normal controls (NC), 100 subjective memory complaint (SMC), 559 mild cognitive impairment (MCI) and 143 Alzheimer’s disease dementia subjects from the Alzheimer’s Disease Neuroimaging Initiative received (18F)-florbetapir positron emission tomography (PET) scans. Yearly neuropsychiatric inventory (Neuropsychiatric Inventory (NPI)/NPI-Questionnaire) data were collected from the study partners at each visit. Mean standard uptake volume ratios (SUVR) normalised to whole cerebellum were obtained. Positive amyloid PET scan was defined as mean SUVR ≥1.17. Fisher’s exact test was used to compare frequency and incidence between amyloid positive and amyloid negative subjects. Survival analyses were used to estimate of neuropsychiatric symptoms (NPS) between amyloid positive and amyloid negative subjects. Survival analyses were used to estimate hazard ratios for developing the most common NPS by amyloid status. Results No differences in NPS frequency were seen between amyloid positive and amyloid negative NC, SMC, MCI or dementia groups. MCI subjects with amyloid pathology however tended to have greater frequency x severity (FxS) of anxiety, hallucinations, delusions, apathy, disinhibition, irritability, aberrant motor behavior, and appetite, but not agitation, depression, night-time disturbances, or elation. MCI subjects with amyloid pathology were at greater risk for developing apathy, anxiety and agitation over time. Baseline presence of agitation and apathy and new onset agitation, irritability and apathy predicted faster conversion to dementia among MCI subjects. Conclusions Amyloid pathology is associated with greater rate of development of new NPS in MCI. Anxiety and delusions are significant predictors of amyloid pathology. Agitation, irritability and apathy are significant predictors for conversion from MCI to dementia.Item Genome-wide pathway analysis of memory impairment in the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort(Office of the Vice Chancellor for Research, 2012-04-13) Ramanan, Vijay K.; Kim, Sungeun; Holohan, Kelly; Shen, Li; Nho, Kwangsik; Risacher, Shannon L.; Foroud, Tatiana M.; Mukherjee, Shubhabrata; Crane, Paul K.; Aisen, Paul S.; Petersen, Ronald C.; Weiner, Michael W.; Saykin, Andrew J.Memory deficits are prominent features of mild cognitive impairment (MCI) and Alzheimer’s disease (AD). The genetic architecture underlying these memory deficits likely involves the combined effects of multiple genetic variants operative within numerous biological pathways. In order to identify functional pathways associated with memory impairment, we performed a pathway enrichment analysis on genome-wide association data from 742 Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants. A composite measure of memory was generated as the phenotype for this analysis by applying modern psychometric theory to item-level data from the ADNI neuropsychological test battery. Using the GSA-SNP software tool, we identified 27 canonical, expertly-curated pathways with enrichment (FDR-corrected p-value < 0.05) against this composite memory score. Processes classically understood to be involved in memory consolidation, such as neurotransmitter receptor-mediated calcium signaling and long-term potentiation, were highly represented among the enriched pathways. In addition, pathways related to cell adhesion, neuronal differentiation and guided outgrowth, and glucose- and inflammation-related signaling were also enriched. Among genes that were highly-represented in these enriched pathways, we found indications of coordinated relationships, including one large gene set that is subject to regulation by the SP1 transcription factor, and another set that displays co-localized expression in normal brain tissue along with known AD risk genes. These results 1) highlight key pathways and their candidate genes that appear to underlie susceptibility to memory impairment in this population, 2) suggest mechanistic targets for future studies related to diagnosis and treatment of memory deficits, and 3) validate the promise of pathway analysis in elucidating key processes underlying complex traits.Item Variants in the Mitochondrial Intermediate Peptidase (MIPEP) Gene are Associated with Gray Matter Density in the Alzheimer’s Disease Neuroimaging Initiative Cohort(Office of the Vice Chancellor for Research, 2015-04-17) Nudelman, Kelly N. H.; Risacher, Shannon L.; West, John D.; McDonald, Brenna C.; Gao, Su; Saykin, Andrew J.Cancer and Alzheimer’s disease (AD) incidence is inversely correlated, but the genetic underpinnings of this relationship remain to be elucidated. Recent findings identified lower gray matter density in frontal regions of participants of the Alzheimer’s Disease Neuroimaging Initiative (ADNI) with cancer history compared to those without such history, across diagnostic groups (Nudelman et al., 2014). Pathways proposed to impact cancer and AD, including metabolism and survival, may play an important role in the observed difference. To test this hypothesis, a genome-wide association study (GWAS) using mean frontal gray matter cluster values was performed for all Caucasian participants in this cohort with neuroimaging and genetic data (n=1405). Analysis covaried for age, sex, AD, and cancer history. Of the two genes with the most significant SNPs (p<10-5), WD repeat domain 5B (WDR5B) and mitochondrial intermediate peptidase (MIPEP), MIPEP was selected for further analysis given the hypothesis focus on metabolism. ANOVA analysis of MIPEP top SNP rs8181878 with frontal gray matter cluster values in SPSS indicated that while this SNP is significantly associated with gray matter density (p=2x10-6), no interaction was observed with cancer history or AD diagnosis. Furthermore, whole brain gray matter voxel-wise analysis of this SNP using Statistical Parametric Mapping 8 software showed that minor allele(s) of this SNP were significantly (PFWE<0.05) associated with higher gray matter density. These results suggest that the minor allele of MIPEP SNP rs8181878 may be protective against gray matter density loss, highlighting the importance of metabolic processes in aging and disease.