- Browse by Subject
Browsing by Subject "Alloimmunity"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item The Checkpoint Regulator SLAMF3 Preferentially Prevents Expansion of Auto-Reactive B Cells Generated by Graft-vs.-Host Disease(Frontiers, 2019-04-17) Wang, Ninghai; Yigit, Burcu; van der Poel, Cees E.; Cuenca, Marta; Carroll, Michael C.; Herzog, Roland W.; Engel, Pablo; Terhorst, Cox; Pediatrics, School of MedicineAbsence of the mouse cell surface receptor SLAMF3 in SLAMF3-/- mice suggested that this receptor negatively regulates B cell homeostasis by modulating activation thresholds of B cell subsets. Here, we examine whether anti-SLAMF3 affects both B and T cell subsets during immune responses to haptenated ovalbumin [NP-OVA] and in the setting of chronic graft vs. host disease (cGVHD) induced by transferring B6.C-H2 bm12/KhEg (bm12) CD4+ T cells into B6 WT mice. We find that administering αSLAMF3 to NP-OVA immunized B6 mice primarily impairs antibody responses and Germinal center B cell [GC B] numbers, whilst CXCR5+, PD-1+, and ICOS+ T follicular helper (TFH) cells are not significantly affected. By contrast, administering αSLAMF3 markedly enhanced autoantibody production upon induction of cGVHD by the transfer of bm12 CD4+ T cells into B6 recipients. Surprisingly, αSLAMF3 accelerated both the differentiation of GC B and donor-derived TFH cells initiated by cGVHD. The latter appeared to be induced by decreased numbers of donor-derived Treg and T follicular regulatory (TFR) cells. Collectively, these data show that control of anti-SLAMF3-induced signaling is requisite to prevent autoantibody responses during cGVHD, but reduces responses to foreign antigens.Item LNCing RNA to Imm(Elsevier, 2022) Peltier, Daniel C.; Roberts, Alexis; Reddy, Pavan; Pediatrics, School of MedicineDespite an ever-increasing appreciation of how protein-coding genes shape immune responses, the molecular underpinnings of immune regulation remain incompletely understood. This incomplete picture impedes the development of more precise therapeutics and diagnostics for immune-mediated diseases. Long noncoding RNAs (lncRNAs) are versatile cell- and context-specific regulators of gene expression and cellular function. The number of lncRNA genes rivals that of protein-coding genes; however, comparatively little is known about their function. Even though the functions of most lncRNA genes are unknown, multiple lncRNAs have recently emerged as important immune regulators. Therefore, further unlocking the role of lncRNAs in the mammalian immune system coupled with their tissue-specific expression might lead to more precise therapeutics and diagnostics for immune disorders in general.