ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Allergens"

Now showing 1 - 7 of 7
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Allergic airway recall responses require IL-9 from resident memory CD4+ T cells
    (American Association for the Advancement of Science, 2022) Ulrich, Benjamin J.; Kharwadkar, Rakshin; Chu, Michelle; Pajulas, Abigail; Muralidharan, Charanya; Koh, Byunghee; Fu, Yongyao; Gao, Hongyu; Hayes, Tristan A.; Zhou, Hong-Ming; Goplen, Nick P.; Nelson, Andrew S.; Liu, Yunlong; Linnemann, Amelia K.; Turner, Matthew J.; Licona-Limón, Paula; Flavell, Richard A.; Sun, Jie; Kaplan, Mark H.; Microbiology and Immunology, School of Medicine
    Asthma is a chronic inflammatory lung disease with intermittent flares predominately mediated through memory T cells. Yet, the identity of long-term memory cells that mediate allergic recall responses is not well defined. In this report, using a mouse model of chronic allergen exposure followed by an allergen-free rest period, we characterized a subpopulation of CD4+ T cells that secreted IL-9 as an obligate effector cytokine. IL-9-secreting cells had a resident memory T cell phenotype, and blocking IL-9 during a recall challenge or deleting IL-9 from T cells significantly diminished airway inflammation and airway hyperreactivity. T cells secreted IL-9 in an allergen recall-specific manner, and secretion was amplified by IL-33. Using scRNA-seq and scATAC-seq, we defined the cellular identity of a distinct population of T cells with a proallergic cytokine pattern. Thus, in a recall model of allergic airway inflammation, IL-9 secretion from a multicytokine-producing CD4+ T cell population was required for an allergen recall response.
  • Loading...
    Thumbnail Image
    Item
    An IL-9-pulmonary macrophage axis defines the allergic lung inflammatory environment
    (American Association for the Advancement of Science, 2022) Fu, Yongyao; Wang, Jocelyn; Zhou, Baohua; Pajulas, Abigail; Gao, Hongyu; Ramdas, Baskar; Koh, Byunghee; Ulrich, Benjamin J.; Yang, Shuangshuang; Kapur, Reuben; Renauld, Jean-Christophe; Paczesny, Sophie; Liu, Yunlong; Tighe, Robert M.; Licona-Limón, Paula; Flavell, Richard A.; Takatsuka, Shogo; Kitamura, Daisuke; Tepper, Robert S.; Sun, Jie; Kaplan, Mark H.; Microbiology and Immunology, School of Medicine
    Despite IL-9 functioning as a pleiotropic cytokine in mucosal environments, the IL-9-responsive cell repertoire is still not well defined. Here, we found that IL-9 mediates proallergic activities in the lungs by targeting lung macrophages. IL-9 inhibits alveolar macrophage expansion and promotes recruitment of monocytes that develop into CD11c+ and CD11c- interstitial macrophage populations. Interstitial macrophages were required for IL-9-dependent allergic responses. Mechanistically, IL-9 affected the function of lung macrophages by inducing Arg1 activity. Compared with Arg1-deficient lung macrophages, Arg1-expressing macrophages expressed greater amounts of CCL5. Adoptive transfer of Arg1+ lung macrophages but not Arg1- lung macrophages promoted allergic inflammation that Il9r-/- mice were protected against. In parallel, the elevated expression of IL-9, IL-9R, Arg1, and CCL5 was correlated with disease in patients with asthma. Thus, our study uncovers an IL-9/macrophage/Arg1 axis as a potential therapeutic target for allergic airway inflammation.
  • Loading...
    Thumbnail Image
    Item
    Follicular helper T cells mediate IgE antibody response to airborne allergens
    (Elsevier, 2017-01) Kobayashi, Takao; Iijima, Koji; Dent, Alexander L.; Kita, Hirohito; Microbiology and Immunology, School of Medicine
    BACKGROUND: TH2 cells have long been believed to play a pivotal role in allergic immune responses, including IgE antibody production and type 2 cytokine-mediated inflammation and pathology. A new T-cell subset, follicular helper T (TFH) cells, is specialized in supporting B-cell maturation and antibody production. OBJECTIVE: We sought to investigate the roles of TFH cells in allergic immune responses. METHODS: Naive mice were exposed to cytokines or natural allergens through the airways. Development of allergic immune responses was analyzed by collecting draining lymph nodes and sera and by challenging the animals. Cytokine reporter mice and gene-deficient mice were used to dissect the immunologic mechanisms. RESULTS: We observed the development of IL-4-producing TFH cells and TH2 cells in draining lymph nodes after airway exposure to IL-1 family cytokines or natural allergens. TFH and TH2 cells demonstrated unique phenotypes, tissue localization, and cytokine responses. TFH cells supported the sustained production of IgE antibody in vivo in the absence of other T-cell subsets or even when TH2 cell functions were severely compromised. Conversely, conditional deficiency of the master regulator Bcl6 in CD4+ T cells resulted in a marked reduction in TFH cell numbers and IgE antibody levels, but type 2 cytokine responses and eosinophilic inflammation in the airways remained unaffected. CONCLUSION: TFH cells play critical roles in the regulation of IgE antibody production. Allergic immune responses to airborne allergens likely involve 2 distinct subsets of IL-4-producing CD4+ T cells, namely TFH and Th2 cells.
  • Loading...
    Thumbnail Image
    Item
    A heterobivalent ligand inhibits mast cell degranulation via selective inhibition of allergen-IgE interactions in vivo
    (The American Association of Immunologists, 2014-01-31) Handlogten, Michael W.; Serezani, Ana P.; Sinn, Anthony L.; Pollok, Karen E.; Kaplan, Mark H.; Bilgicer, Basar; Department of Pediatrics, IU School of Medicine
    Current treatments for allergies include epinephrine and antihistamines, which treat the symptoms after an allergic response has taken place; steroids, which result in local and systemic immune suppression; and IgE-depleting therapies, which can be used only for a narrow range of clinical IgE titers. The limitations of current treatments motivated the design of a heterobivalent inhibitor (HBI) of IgE-mediated allergic responses that selectively inhibits allergen-IgE interactions, thereby preventing IgE clustering and mast cell degranulation. The HBI was designed to simultaneously target the allergen binding site and the adjacent conserved nucleotide binding site (NBS) found on the Fab of IgE Abs. The bivalent targeting was accomplished by linking a hapten to an NBS ligand with an ethylene glycol linker. The hapten moiety of HBI enables selective targeting of a specific IgE, whereas the NBS ligand enhances avidity for the IgE. Simultaneous bivalent binding to both sites provided HBI with 120-fold enhancement in avidity for the target IgE compared with the monovalent hapten. The increased avidity for IgE made HBI a potent inhibitor of mast cell degranulation in the rat basophilic leukemia mast cell model, in the passive cutaneous anaphylaxis mouse model of allergy, and in mice sensitized to the model allergen. In addition, HBI did not have any observable systemic toxic effects even at elevated doses. Taken together, these results establish the HBI design as a broadly applicable platform with therapeutic potential for the targeted and selective inhibition of IgE-mediated allergic responses, including food, environmental, and drug allergies.
  • Loading...
    Thumbnail Image
    Item
    IL-33 promotes the egress of group 2 innate lymphoid cells from the bone marrow
    (Rockefeller University Press, 2018-01-02) Stier, Matthew T.; Zhang, Jian; Goleniewska, Kasia; Cephus, Jacqueline Y.; Rusznak, Mark; Wu, Lan; Kaer, Luc Van; Zhou, Baohua; Newcomb, Dawn C.; Peebles, R. Stokes, Jr.; Pediatrics, School of Medicine
    Group 2 innate lymphoid cells (ILC2s) are effector cells within the mucosa and key participants in type 2 immune responses in the context of allergic inflammation and infection. ILC2s develop in the bone marrow from common lymphoid progenitor cells, but little is known about how ILC2s egress from the bone marrow for hematogenous trafficking. In this study, we identified a critical role for IL-33, a hallmark peripheral ILC2-activating cytokine, in promoting the egress of ILC2 lineage cells from the bone marrow. Mice lacking IL-33 signaling had normal development of ILC2s but retained significantly more ILC2 progenitors in the bone marrow via augmented expression of CXCR4. Intravenous injection of IL-33 or pulmonary fungal allergen challenge mobilized ILC2 progenitors to exit the bone marrow. Finally, IL-33 enhanced ILC2 trafficking to the lungs in a parabiosis mouse model of tissue disruption and repopulation. Collectively, these data demonstrate that IL-33 plays a critical role in promoting ILC2 egress from the bone marrow.
  • Loading...
    Thumbnail Image
    Item
    Mast Cells Regulate Epidermal Barrier Function and the Development of Allergic Skin Inflammation
    (Elsevier, 2016-07) Sehra, Sarita; Serezani, Ana PM; Ocaña, Jesus A.; Travers, Jeffrey B.; Kaplan, Mark H.; Pediatrics, School of Medicine
    Atopic dermatitis is a chronic inflammatory skin disease characterized by infiltration of eosinophils, T helper cells, and mast cells. The role of mast cells in atopic dermatitis is not completely understood. To define the effects of mast cells on skin biology, we observed that mast cells regulate the homeostatic expression of epidermal differentiation complex and other skin genes. Decreased epidermal differentiation complex gene expression in mice that genetically lack mast cells (Kit(W-sh/W-sh) mice) is associated with increased uptake of protein antigens painted on the skin by dendritic cells (DCs) compared with similarly treated wild-type mice, suggesting a protective role for mast cells in exposure to nominal environmental allergens. To test this further, we crossed Kit(W-sh/W-sh) mice with signal transducer and activator of transcription 6 (i.e., Stat6) VT transgenic mice that develop spontaneous atopic dermatitis-like disease that is dependent on T helper cell 2 cytokines and is associated with high serum concentrations of IgE. We observed that Stat6VT × Kit(W-sh/W-sh) mice developed more frequent and more severe allergic skin inflammation than Stat6VT transgenic mice that had mast cells. Together, these studies suggest that mast cells regulate epidermal barrier function and have a potential protective role in the development of atopic dermatitis-like disease
  • Loading...
    Thumbnail Image
    Item
    Plant cell-made protein antigens for induction of Oral tolerance
    (Elsevier, 2019-11-15) Daniell, Henry; Kulis, Michael; Herzog, Roland W.; Pediatrics, School of Medicine
    The gut associated lymphoid tissue has effective mechanisms in place to maintain tolerance to food antigens. These can be exploited to induce antigen-specific tolerance for the prevention and treatment of autoimmune diseases and severe allergies and to prevent serious immune responses in protein replacement therapies for genetic diseases. An oral tolerance approach for the prevention of peanut allergy in infants proved highly efficacious and advances in treatment of peanut allergy have brought forth an oral immunotherapy drug that is currently awaiting FDA approval. Several other protein antigens made in plant cells are in clinical development. Plant cell-made proteins are protected in the stomach from acids and enzymes after their oral delivery because of bioencapsulation within plant cell wall, but are released to the immune system upon digestion by gut microbes. Utilization of fusion protein technologies facilitates their delivery to the immune system, oral tolerance induction at low antigen doses, resulting in efficient induction of FoxP3+ and latency-associated peptide (LAP)+ regulatory T cells that express immune suppressive cytokines such as IL-10. LAP and IL-10 expression represent potential biomarkers for plant-based oral tolerance. Efficacy studies in hemophilia dogs support clinical development of oral delivery of bioencapsulated antigens to prevent anti-drug antibody formation. Production of clinical grade materials in cGMP facilities, stability of antigens in lyophilized plant cells for several years when stored at ambient temperature, efficacy of oral delivery of human doses in large animal models and lack of toxicity augur well for clinical advancement of this novel drug delivery concept.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University