- Browse by Subject
Browsing by Subject "Alcoholic liver disease"
Now showing 1 - 10 of 12
Results Per Page
Sort Options
Item Alcoholic Liver Disease in Asia, Europe, and North America(Elsevier, 2016-06) Liangpunsakul, Suthat; Haber, Paul; McCaughan, Geoffrey W.; Medicine, School of MedicineAlcoholic liver diseases comprise a spectrum of clinical disorders and changes in liver tissue that can be detected by pathology analysis. These range from steatosis to more severe signs and symptoms of liver disease associated with inflammation, such as those observed in patients with alcoholic hepatitis or cirrhosis. Although the relationship between alcohol consumption and liver disease is well established, severe alcohol-related morbidities develop in only a minority of people who consume alcohol in excess. Inter-individual differences in susceptibility to the toxic effects of alcohol have been studied extensively-they include pattern of alcohol consumption, sex, environmental factors (such as diet), and genetic factors, which vary widely among different parts of the world. Alcoholic liver disease is becoming more common in many parts of Asia, but is decreasing in Western Europe. Treatment approaches, including availability of medications, models of care, and approach to transplantation, differ among regions.Item Autophagy in Alcoholic Liver Disease, Self-eating Triggered by Drinking(Elsevier, 2015-09) Wang, Lin; Khambu, Bilon; Zhang, Hao; Yin, Xiao-Ming; Pathology and Laboratory Medicine, School of MedicineMacroautophagy (autophagy) is an evolutionarily conserved mechanism. It is important for normal cellular function and also plays critical roles in the etiology and pathogenesis of a number of human diseases. In alcohol-induced liver disease, autophagy is a protective mechanism against the liver injury caused by alcohol. Autophagy is activated in acute ethanol treatment but could be suppressed in chronic and/or high dose treatment of alcohol. The selective removal of lipid droplets and/or damaged mitochondria is likely the major mode of autophagy in reducing liver injury. Understanding the dynamics of the autophagy process and the approach to modulate autophagy could help finding new ways to battle against alcohol-induced liver injury.Item Circulating Extracellular Vesicles Carrying Sphingolipid Cargo for the Diagnosis and Dynamic Risk Profiling of Alcoholic Hepatitis(Wolters Kluwer, 2021) Sehrawat, Tejasav S.; Arab, Juan P.; Liu, Mengfei; Amrollahi, Pouya; Wan, Meihua; Fan, Jia; Nakao, Yasuhiko; Pose, Elisa; Navarro-Corcuera, Amaia; Dasgupta, Debanjali; Liao, Chieh-Yu; He, Li; Mauer, Amy S.; Avitabile, Emma; Ventura-Cots, Meritxell; Bataller, Ramon A.; Sanyal, Arun J.; Chalasani, Naga P.; Heimbach, Julie K.; Watt, Kymberly D.; Gores, Gregory J.; Gines, Pere; Kamath, Patrick S.; Simonetto, Douglas A.; Hu, Tony Y.; Shah, Vijay H.; Malhi, Harmeet; Medicine, School of MedicineBackground and aims: Alcoholic hepatitis (AH) is diagnosed by clinical criteria, although several objective scores facilitate risk stratification. Extracellular vesicles (EVs) have emerged as biomarkers for many diseases and are also implicated in the pathogenesis of AH. Therefore, we investigated whether plasma EV concentration and sphingolipid cargo could serve as diagnostic biomarkers for AH and inform prognosis to permit dynamic risk profiling of AH subjects. Approach and results: EVs were isolated and quantified from plasma samples from healthy controls, heavy drinkers, and subjects with end-stage liver disease (ESLD) attributed to cholestatic liver diseases and nonalcoholic steatohepatitis, decompensated alcohol-associated cirrhosis (AC), and AH. Sphingolipids were quantified by tandem mass spectroscopy. The median plasma EV concentration was significantly higher in AH subjects (5.38 × 1011 /mL) compared to healthy controls (4.38 × 1010 /mL; P < 0.0001), heavy drinkers (1.28 × 1011 /mL; P < 0.0001), ESLD (5.35 × 1010 /mL; P < 0.0001), and decompensated AC (9.2 × 1010 /mL; P < 0.0001) disease controls. Among AH subjects, EV concentration correlated with Model for End-Stage Liver Disease score. When EV counts were dichotomized at the median, survival probability for AH subjects at 90 days was 63.0% in the high-EV group and 90.0% in the low-EV group (log-rank P value = 0.015). Interestingly, EV sphingolipid cargo was significantly enriched in AH when compared to healthy controls, heavy drinkers, ESLD, and decompensated AC (P = 0.0001). Multiple sphingolipids demonstrated good diagnostic and prognostic performance as biomarkers for AH. Conclusions: Circulating EV concentration and sphingolipid cargo signature can be used in the diagnosis and differentiation of AH from heavy drinkers, decompensated AC, and other etiologies of ESLD and predict 90-day survival permitting dynamic risk profiling.Item Depdc5 deficiency exacerbates alcohol-induced hepatic steatosis via suppression of PPARα pathway(Springer Nature, 2021-07-15) Xu, Lin; Zhang, Xinge; Xin, Yue; Ma, Jie; Yang, Chenyan; Zhang, Xi; Hou, Guoqing; Dong, Xiaocheng Charlie; Sun, Zhaoli; Xiong, Xiwen; Cao, Xuan; Biochemistry and Molecular Biology, School of MedicineAlcohol-related liver disease (ALD), a condition caused by alcohol overconsumption, occurs in three stages of liver injury including steatosis, hepatitis, and cirrhosis. DEP domain-containing protein 5 (DEPDC5), a component of GAP activities towards Rags 1 (GATOR1) complex, is a repressor of amino acid-sensing branch of the mammalian target of rapamycin complex 1 (mTORC1) pathway. In the current study, we found that aberrant activation of mTORC1 was likely attributed to the reduction of DEPDC5 in the livers of ethanol-fed mice or ALD patients. To further define the in vivo role of DEPDC5 in ALD development, we generated Depdc5 hepatocyte-specific knockout mouse model (Depdc5-LKO) in which mTORC1 pathway was constitutively activated through loss of the inhibitory effect of GATOR1. Hepatic Depdc5 ablation leads to mild hepatomegaly and liver injury and protects against diet-induced liver steatosis. In contrast, ethanol-fed Depdc5-LKO mice developed severe hepatic steatosis and inflammation. Pharmacological intervention with Torin 1 suppressed mTORC1 activity and remarkably ameliorated ethanol-induced hepatic steatosis and inflammation in both control and Depdc5-LKO mice. The pathological effect of sustained mTORC1 activity in ALD may be attributed to the suppression of peroxisome proliferator activated receptor α (PPARα), the master regulator of fatty acid oxidation in hepatocytes, because fenofibrate (PPARα agonist) treatment reverses ethanol-induced liver steatosis and inflammation in Depdc5-LKO mice. These findings provide novel insights into the in vivo role of hepatic DEPDC5 in the development of ALD.Item Depletion of mitochondrial methionine adenosyltransferase α1 triggers mitochondrial dysfunction in alcohol-associated liver disease(Springer Nature, 2022-01-28) Barbier-Torres, Lucía; Murray, Ben; Yang, Jin Won; Wang, Jiaohong; Matsuda, Michitaka; Robinson, Aaron; Binek, Aleksandra; Fan, Wei; Fernández-Ramos, David; Lopitz-Otsoa, Fernando; Luque-Urbano, Maria; Millet, Oscar; Mavila, Nirmala; Peng, Hui; Ramani, Komal; Gottlieb, Roberta; Sun, Zhaoli; Liangpunsakul, Suthat; Seki, Ekihiro; Van Eyk, Jennifer E.; Mato, Jose M.; Lu, Shelly C.; Medicine, School of MedicineMATα1 catalyzes the synthesis of S-adenosylmethionine, the principal biological methyl donor. Lower MATα1 activity and mitochondrial dysfunction occur in alcohol-associated liver disease. Besides cytosol and nucleus, MATα1 also targets the mitochondria of hepatocytes to regulate their function. Here, we show that mitochondrial MATα1 is selectively depleted in alcohol-associated liver disease through a mechanism that involves the isomerase PIN1 and the kinase CK2. Alcohol activates CK2, which phosphorylates MATα1 at Ser114 facilitating interaction with PIN1, thereby inhibiting its mitochondrial localization. Blocking PIN1-MATα1 interaction increased mitochondrial MATα1 levels and protected against alcohol-induced mitochondrial dysfunction and fat accumulation. Normally, MATα1 interacts with mitochondrial proteins involved in TCA cycle, oxidative phosphorylation, and fatty acid β-oxidation. Preserving mitochondrial MATα1 content correlates with higher methylation and expression of mitochondrial proteins. Our study demonstrates a role of CK2 and PIN1 in reducing mitochondrial MATα1 content leading to mitochondrial dysfunction in alcohol-associated liver disease.Item Enhanced Ca2+-channeling complex formation at the ER-mitochondria interface underlies the pathogenesis of alcohol-associated liver disease(Springer Nature, 2023-03-27) Thoudam, Themis; Chanda, Dipanjan; Lee, Jung Yi; Jung, Min-Kyo; Sinam, Ibotombi Singh; Kim, Byung-Gyu; Park, Bo-Yoon; Kwon, Woong Hee; Kim, Hyo-Jeong; Kim, Myeongjin; Lim, Chae Won; Lee, Hoyul; Huh, Yang Hoon; Miller, Caroline A.; Saxena, Romil; Skill, Nicholas J.; Huda, Nazmul; Kusumanchi, Praveen; Ma, Jing; Yang, Zhihong; Kim, Min-Ji; Mun, Ji Young; Harris, Robert A.; Jeon, Jae-Han; Liangpunsakul, Suthat; Lee, In-Kyu; Pathology and Laboratory Medicine, School of MedicineCa2+ overload-induced mitochondrial dysfunction is considered as a major contributing factor in the pathogenesis of alcohol-associated liver disease (ALD). However, the initiating factors that drive mitochondrial Ca2+ accumulation in ALD remain elusive. Here, we demonstrate that an aberrant increase in hepatic GRP75-mediated mitochondria-associated ER membrane (MAM) Ca2+-channeling (MCC) complex formation promotes mitochondrial dysfunction in vitro and in male mouse model of ALD. Unbiased transcriptomic analysis reveals PDK4 as a prominently inducible MAM kinase in ALD. Analysis of human ALD cohorts further corroborate these findings. Additional mass spectrometry analysis unveils GRP75 as a downstream phosphorylation target of PDK4. Conversely, non-phosphorylatable GRP75 mutation or genetic ablation of PDK4 prevents alcohol-induced MCC complex formation and subsequent mitochondrial Ca2+ accumulation and dysfunction. Finally, ectopic induction of MAM formation reverses the protective effect of PDK4 deficiency in alcohol-induced liver injury. Together, our study defines a mediatory role of PDK4 in promoting mitochondrial dysfunction in ALD.Item Interaction between the patatin-like phospholipase domain-containing protein 3 genotype and coffee drinking and the risk for acute alcoholic hepatitis(Wiley, 2017-11-11) Liangpunsakul, Suthat; Beaudoin, James J.; Shah, Vijay H.; Puri, Puneet; Sanyal, Arun J.; Kamath, Patrick S.; Lourens, Spencer G.; Tang, Qing; Katz, Barry P.; Crabb, David W.; Chalasani, Naga P.; Medicine, School of MedicineOnly a subset of subjects with excessive alcohol consumption develops alcoholic liver disease (ALD). One of the major risk factors for ALD is the genetic variant of the patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene. Coffee is one of the most commonly consumed beverages, and coffee consumption has been associated with lower levels of serum alanine aminotransferase. The aim of this study was to investigate the role of coffee drinking and PNPLA3 rs738409 and their association with alcoholic hepatitis (AH) in a well-characterized cohort of subjects from the Translational Research and Evolving Alcoholic Hepatitis Treatment consortium. AH subjects and heavy drinking controls without a history of liver disease who were enrolled between May 2013 and May 2016 were included (n = 339), and the details of alcohol and coffee consumption were assessed. The PNPLA3 variant was determined among participants of European ancestry (n = 183). Relationships between baseline data and AH status were determined, and multivariable logistic regression modeling was performed. During the study period, 189 cases with AH and 150 heavy drinking controls were prospectively enrolled. The prevalence of regular coffee consumption was significantly lower in patients with AH compared to controls (20% versus 43%; P < 0.0001). The overall minor allele frequency of the PNPLA3 variant was higher in AH cases. Multivariable logistic regression revealed that coffee consumption and PNPLA3 were significantly associated with AH status at baseline after adjusting for relevant patient characteristics. Conclusion: We found a higher prevalence of AH among heavy drinkers with PNPLA3 G/G and G/C genotypes regardless of coffee consumption status and a higher prevalence of AH among heavy drinkers who were not regular coffee drinkers. These findings remained after considering relevant baseline patient characteristics. Further studies are needed to confirm our observation.Item An Open-Label, Dose-Escalation Study to Assess the Safety and Efficacy of IL-22 Agonist F-652 in Patients With Alcohol-associated Hepatitis(Wolters Kluwer, 2020-08) Arab, Juan P.; Sehrawat, Tejasav S.; Simonetto, Douglas A.; Verma, Vikas K.; Feng, Dechun; Tang, Tom; Dreyer, Kevin; Yan, Xiaoqiang; Daley, William L.; Sanyal, Arun; Chalasani, Naga; Radaeva, Svetlana; Yang, Liu; Vargas, Hugo; Ibacache, Mauricio; Gao, Bin; Gores, Gregory J.; Malhi, Harmeet; Kamath, Patrick S.; Shah, Vijay H.; Medicine, School of MedicineBackground and aims: Interleukin-22 has beneficial effects on inflammation and impaired hepatic regeneration that characterize alcohol-associated hepatitis (AH). F-652 is a recombinant fusion protein of human interleukin-22 and immunoglobulin G2 fragment crystallizable. This study aims to assess the safety and efficacy signals of F-652 in patients with moderate and severe AH. Approach and results: A phase-2 dose-escalating study was carried out. F-652 (10 μg/kg, 30 μg/kg, or 45 μg/kg) administered on days 1 and 7 was tested in 3 patients each with moderate (Model for End-Stage Liver Disease [MELD] scores: 11-20) and severe AH (MELD scores: 21-28). Safety was defined by absence of serious adverse events and efficacy was assessed by Lille score, changes in MELD score, and serum bilirubin and aminotransferases at days 28 and 42. Three independent propensity-matched comparator patient cohorts were used. Plasma extracellular vesicles and multiplex serum cytokines were measured to assess inflammation and hepatic regeneration. Eighteen patients (9 moderate and 9 severe AH) were enrolled, 66% were male, and the mean age was 48 years. The half-life of F-652 following the first dose was 61-85 hours. There were no serious adverse events leading to discontinuation. The MELD score and serum aminotransferases decreased significantly at days 28 and 42 from baseline (P < 0.05). Day-7 Lille score was 0.45 or less in 83% patients as compared with 6%, 12%, and 56% among the comparator cohorts. Extracellular vesicle counts decreased significantly at day 28 (P < 0.013). Cytokine inflammatory markers were down-regulated, and regeneration markers were up-regulated at days 28 and 42. Conclusions: F-652 is safe in doses up to 45 μg/kg and associated with a high rate of improvement as determined by Lille and MELD scores, reductions in markers of inflammation and increases in markers of hepatic regeneration. This study supports the need for randomized placebo-controlled trials to test the efficacy of F-652 in AH.Item Platelets in Alcohol-Associated Liver Disease: Interaction With Neutrophils(Elsevier, 2024) Wang, Juan; Wang, Xianda; Peng, Haodong; Dong, Zijian; Liangpunsakul, Suthat; Zuo, Li; Wang, Hua; Medicine, School of MedicineAlcohol-associated liver disease (ALD) is a major contributor to liver-related mortality globally. An increasing body of evidence underscores the pivotal role of platelets throughout the spectrum of liver injury and recovery, offering unique insights into liver homeostasis and pathobiology. Alcoholic-associated steatohepatitis is characterized by the infiltration of hepatic neutrophils. Recent studies have highlighted the extensive distance neutrophils travel through sinusoids to reach the liver injury site, relying on a platelet-paved endothelium for efficient crawling. The adherence of platelets to neutrophils is crucial for accurate migration from circulation to the inflammatory site. A gradual decline in platelet levels leads to diminished neutrophil recruitment. Platelets exhibit the ability to activate neutrophils. Platelet activation is heightened upon the release of platelet granule contents, which synergistically activate neutrophils through their respective receptors. The sequence culminates in the formation of platelet–neutrophil complexes and the release of neutrophil extracellular traps intensifies liver damage, fosters inflammatory immune responses, and triggers hepatotoxic processes. Neutrophil infiltration is a hallmark of alcohol-associated steatohepatitis, and the roles of neutrophils in ALD pathogenesis have been studied extensively, however, the involvement of platelets in ALD has received little attention. The current review consolidates recent findings on the intricate and diverse roles of platelets and neutrophils in liver pathophysiology and in ALD. Potential therapeutic strategies are highlighted, focusing on targeting platelet–neutrophil interactions and activation in ALD. The anticipation is that innovative methods for manipulating platelet and neutrophil functions will open promising avenues for future ALD therapy.Item PNPLA3—A Potential Therapeutic Target for Personalized Treatment of Chronic Liver Disease(Frontiers Media, 2019-12-17) Dong, Xiaocheng Charlie; Biochemistry and Molecular Biology, School of MedicinePatatin-like phospholipase domain-containing protein 3 (PNPLA3) is a lipid droplet-associated protein that has been shown to have hydrolase activity toward triglycerides and retinyl esters. The first evidence of PNPLA3 being associated with fatty liver disease was revealed by a genome-wide association study (GWAS) of Hispanic, African American, and European American individuals in the Dallas Heart Study back in 2008. Since then, numerous GWAS reports have shown that PNPLA3 rs738409[G] (148M) variant is associated with hepatic triglyceride accumulation (steatosis), inflammation, fibrosis, cirrhosis, and even hepatocellular carcinoma regardless of etiologies including alcohol- or obesity-related and others. The frequency of PNPLA3(148M) variant ranges from 17% in African Americans, 23% in European Americans, to 49% in Hispanics in the Dallas Heart Study. Due to high prevalence of obesity and alcohol consumption in modern societies, the PNPLA3(148M) gene variant and environment interaction poses a serious concern for public health, especially chronic liver diseases including alcohol-related liver disease (ALD) and nonalcoholic fatty liver disease (NAFLD). Therefore, PNPLA3(148M) variant is a potential therapeutic target for chronic liver disease in the rs738409 allele carriers. Currently, there is no approved drug specifically targeting the PNPLA3(148M) variant yet. With additional mechanistic studies, novel therapeutic strategies are expected to be developed for the treatment of the PNPLA3(148M) variant-associated chronic liver diseases in the near future.