ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Alcohol-Induced Disorders, Nervous System"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Regulation of alpha-synuclein expression in alcohol-preferring and -non preferring rats
    (Wiley Blackwell (Blackwell Publishing), 2006-10) Liang, Tiebing; Carr, Lucinda G.; Department of Medicine, IU School of Medicine
    The alpha-synuclein (Snca) gene is expressed at higher levels in alcohol-naïve, inbred alcohol-preferring (iP) rats than in alcohol-non preferring (iNP) rats. Snca modulates dopamine transmission and the dopamineregic system, which play a role in mediating the rewarding properties of alcohol consumption. Thus, understanding regulation of Snca gene expression could provide insight into the relationship of Snca and alcohol consumption. To study regulation of rat Snca expression, 1,912 bp of the iP and iNP 5'-regions were cloned and sequenced. 5'-rapid amplification of cDNA ends (RACE), primer extension and RT-PCR mapped three transcription start site clusters (clusters TSS1, TSS2 and TSS3), suggesting that the Snca proximal promoter region has a complex architecture. This proximal promoter region has three TATA-less core promoters containing SP1 binding sites, initiator elements and downstream core promoter elements, which are often located in such promoters. Snca-luc constructs transiently transfected into SK-N-SH neuroblastoma cells showed that the region from - 1,912 to - 1,746 contained a strong core promoter, and that the entire approximately 2 kb region had significant promoter activity. Five polymorphisms identified between the iP and iNP in the proximal promoter region did not influence differential expression between the strains. In contrast, a single nucleotide polymorphism (SNP) at + 679 in the 3'-untranslated region (UTR) resulted in a 1.3-fold longer half-life of iP mRNA compared with iNP mRNA, which is consistent with the differential expression observed between the iP and iNP strains. These results suggest that regulation of rat Snca gene expression is complex and may contribute to alcohol preference in the iP rats.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University