ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Alcohol dependence"

Now showing 1 - 10 of 13
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    ADH and ALDH polymorphisms and alcohol dependence in Mexican and Native Americans
    (Taylor & Francis, 2012) Ehlers, Cindy L.; Liang, Tiebing; Gizer, Ian R.; Medicine, School of Medicine
    Background: Ethanol is primarily metabolized in the liver by two rate-limiting reactions: conversion of ethanol to acetaldehyde by alcohol dehydrogenase (ADH) and subsequent conversion of acetaldehyde to acetate by aldehyde dehydrogenase (ALDH). ADH and ALDH exist in multiple isozymes that differ in their kinetic properties. Notably, polymorphisms within the genes that encode for these isozymes vary in their allele frequencies between ethnic groups, and thus, they have been considered as candidate genes that may differentially influence risk for the development of alcohol dependence across ethnic groups. Objectives and methods: Associations between alcohol dependence and polymorphisms in ADH1B, ADH1C, and ALDH2 were compared in a community sample of Native Americans (n 791) living on reservations and Mexican Americans (n 391) living within the same county. Results: Two Mexican Americans and no Native Americans possessed one ALDH2*2 allele. Presence of at least one ADH1B*2 allele was found in 7% of the Native Americans and 13% of the Mexican Americans, but was only associated with protection against alcohol dependence in the Mexican Americans. Presence of at least one ADH1B*3 allele was found in 4% of the Native Americans and 2% of the Mexican Americans, but was associated with protection against alcohol dependence only in the Native Americans. No associations between alcohol dependence and polymorphisms in ADH1C were found. Conclusions and scientific significance: Polymorphisms in ADH1B are protective against alcoholism in these two populations; however, these findings do not explain the high prevalence of alcoholism in these populations.
  • Loading...
    Thumbnail Image
    Item
    Assessing the Genetic Risk for Alcohol Use Disorders
    (National Institute on Alcohol Abuse and Alcoholism, 2012) Foroud, Tatiana; Phillips, Tamara J.; Medical and Molecular Genetics, School of Medicine
    The past two decades have witnessed a revolution in the field of genetics which has led to a rapid evolution in the tools and techniques available for mapping genes that contribute to genetically complex disorders such as alcohol dependence. Research in humans and in animal models of human disease has provided important new information. Among the most commonly applied approaches used in human studies are family studies, case-control studies, and genome-wide association studies. Animal models have been aimed at identifying genetic regions or individual genes involved in different aspects of alcoholism, using such approaches as quantitative trait locus analysis, genome sequencing, knockout animals, and other sophisticated molecular genetic techniques. All of these approaches have led to the identification of several genes that seem to influence the risk for alcohol dependence, which are being further analyzed. Newer studies, however, also are attempting to look at the genetic basis of alcoholism at the level of the entire genome, moving beyond the study of individual genes toward analyses of gene interactions and gene networks in the development of this devastating disease.
  • Loading...
    Thumbnail Image
    Item
    Association of substance dependence phenotypes in the COGA sample
    (Wiley, 2015-05) Wetherill, Leah; Agrawal, Arpana; Kapoor, Manav; Bertelsen, Sarah; Bierut, Laura J.; Brooks, Andrew; Dick, Danielle; Hesselbrock, Michie; Hesselbrock, Victor; Koller, Daniel L.; Le, Nhung; Nurnberger Jr., John I.; Salvatore, Jessica E.; Schuckit, Marc; Tischfield, Jay A.; Wang, Jen-Chyong; Xuei, Xiaoling; Edenberg, Howard J.; Porjesz, Bernice; Bucholz, Kathleen; Goate, Alison M.; Foroud, Tatiana; Department of Medical & Molecular Genetics, IU School of Medicine
    Alcohol and drug use disorders are individually heritable (50%). Twin studies indicate that alcohol and substance use disorders share common genetic influences, and therefore may represent a more heritable form of addiction and thus be more powerful for genetic studies. This study utilized data from 2322 subjects from 118 European-American families in the Collaborative Study on the Genetics of Alcoholism sample to conduct genome-wide association analysis of a binary and a continuous index of general substance dependence liability. The binary phenotype (ANYDEP) was based on meeting lifetime criteria for any DSM-IV dependence on alcohol, cannabis, cocaine or opioids. The quantitative trait (QUANTDEP) was constructed from factor analysis based on endorsement across the seven DSM-IV criteria for each of the four substances. Heritability was estimated to be 54% for ANYDEP and 86% for QUANTDEP. One single-nucleotide polymorphism (SNP), rs2952621 in the uncharacterized gene LOC151121 on chromosome 2, was associated with ANYDEP (P = 1.8 × 10(-8) ), with support from surrounding imputed SNPs and replication in an independent sample [Study of Addiction: Genetics and Environment (SAGE); P = 0.02]. One SNP, rs2567261 in ARHGAP28 (Rho GTPase-activating protein 28), was associated with QUANTDEP (P = 3.8 × 10(-8) ), and supported by imputed SNPs in the region, but did not replicate in an independent sample (SAGE; P = 0.29). The results of this study provide evidence that there are common variants that contribute to the risk for a general liability to substance dependence.
  • Loading...
    Thumbnail Image
    Item
    Common biological networks underlie genetic risk for alcoholism in African- and European-American populations
    (Wiley, 2013) Kos, Mark Z.; Yan, Jia; Dick, Danielle M.; Agrawal, Arpana; Bucholz, Kathleen K.; Rice, John P.; Johnson, Eric O.; Schuckit, Marc; Kuperman, Sam; Kramer, John; Goate, Alison M.; Tischfield, Jay A.; Foroud, Tatiana; Nurnberger, John, Jr.; Hesselbrock, Victor; Porjesz, Bernice; Bierut, Laura J.; Edenberg, Howard J.; Almasy, Laura; Medical and Molecular Genetics, School of Medicine
    Alcohol dependence (AD) is a heritable substance addiction with adverse physical and psychological consequences, representing a major health and economic burden on societies worldwide. Genes thus far implicated via linkage, candidate gene and genome-wide association studies (GWAS) account for only a small fraction of its overall risk, with effects varying across ethnic groups. Here we investigate the genetic architecture of alcoholism and report on the extent to which common, genome-wide SNPs collectively account for risk of AD in two US populations, African-Americans (AAs) and European-Americans (EAs). Analyzing GWAS data for two independent case-control sample sets, we compute polymarker scores that are significantly associated with alcoholism (P = 1.64 × 10(-3) and 2.08 × 10(-4) for EAs and AAs, respectively), reflecting the small individual effects of thousands of variants derived from patterns of allelic architecture that are population specific. Simulations show that disease models based on rare and uncommon causal variants (MAF < 0.05) best fit the observed distribution of polymarker signals. When scoring bins were annotated for gene location and examined for constituent biological networks, gene enrichment is observed for several cellular processes and functions in both EA and AA populations, transcending their underlying allelic differences. Our results reveal key insights into the complex etiology of AD, raising the possibility of an important role for rare and uncommon variants, and identify polygenic mechanisms that encompass a spectrum of disease liability, with some, such as chloride transporters and glycine metabolism genes, displaying subtle, modifying effects that are likely to escape detection in most GWAS designs.
  • Loading...
    Thumbnail Image
    Item
    Evidence of causal effect of major depression on alcohol dependence: findings from the psychiatric genomics consortium
    (Cambridge University Press, 2019-05) Polimanti, Renato; Peterson, Roseann E.; Ong, Jue-Sheng; MacGregor, Stuart; Edwards, Alexis C.; Clarke, Toni-Kim; Frank, Josef; Gerring, Zachary; Gillespie, Nathan A.; Lind, Penelope A.; Maes, Hermine H.; Martin, Nicholas G.; Mbarek, Hamdi; Medland, Sarah E.; Streit, Fabian; Agrawal, Arpana; Edenberg, Howard J.; Kendler, Kenneth S.; Lewis, Cathryn M.; Sullivan, Patrick F.; Wray, Naomi R.; Gelernter, Joel; Derks, Eske M.; Biochemistry and Molecular Biology, School of Medicine
    BACKGROUND: Despite established clinical associations among major depression (MD), alcohol dependence (AD), and alcohol consumption (AC), the nature of the causal relationship between them is not completely understood. We leveraged genome-wide data from the Psychiatric Genomics Consortium (PGC) and UK Biobank to test for the presence of shared genetic mechanisms and causal relationships among MD, AD, and AC. METHODS: Linkage disequilibrium score regression and Mendelian randomization (MR) were performed using genome-wide data from the PGC (MD: 135 458 cases and 344 901 controls; AD: 10 206 cases and 28 480 controls) and UK Biobank (AC-frequency: 438 308 individuals; AC-quantity: 307 098 individuals). RESULTS: Positive genetic correlation was observed between MD and AD (rgMD-AD = + 0.47, P = 6.6 × 10-10). AC-quantity showed positive genetic correlation with both AD (rgAD-AC quantity = + 0.75, P = 1.8 × 10-14) and MD (rgMD-AC quantity = + 0.14, P = 2.9 × 10-7), while there was negative correlation of AC-frequency with MD (rgMD-AC frequency = -0.17, P = 1.5 × 10-10) and a non-significant result with AD. MR analyses confirmed the presence of pleiotropy among these four traits. However, the MD-AD results reflect a mediated-pleiotropy mechanism (i.e. causal relationship) with an effect of MD on AD (beta = 0.28, P = 1.29 × 10-6). There was no evidence for reverse causation. CONCLUSION: This study supports a causal role for genetic liability of MD on AD based on genetic datasets including thousands of individuals. Understanding mechanisms underlying MD-AD comorbidity addresses important public health concerns and has the potential to facilitate prevention and intervention efforts.
  • Loading...
    Thumbnail Image
    Item
    Externalizing Disorders : Genetics or Prenatal Alcohol Exposure?
    (2018-12) Wetherill, Leah; Goodlett, Charles; Grahame, Nicholas; Foroud, Tatiana; Mattson, Sarah; Neal-Beliveau, Bethany
    Introduction: Externalizing disorders such as attention deficit hyperactivity disorder (ADHD), conduct disorder (CD), and oppositional defiant disorder (ODD) have a high prevalence rate in both children of alcoholics and in those with prenatal alcohol exposure (PAE). These disorders are also predictors of alcohol dependence (alcdep), heritable, and share an underlying genetic liability with alcdep. Furthermore, a mother who drinks while pregnant is likely to be alcohol dependent (AD), and vice-versa. This study incorporated these factors into one model, including as well as a measure of broad genetic risk for ADHD and alcdep to test for the contributions of these effects simultaneously. An independent sample was used to confirm the results for PAE and broad genetic risk. The hypothesis is that PAE will increase the risk to ADHD but not to CD or ODD. Methods: Each of these factors was evaluated independently to test if that effect on its own, significantly contributed to each disorder. Another model included several demographic covariates, to determine which of these environmental effects also contributed to the disorder. The final model for each disorder included environmental effects along with the primary effects of interest. Results: PAE resulted in increased risk for the inattentive (INATT) sub-type of ADHD and conduct disorder (CD) in the discovery sample and for the hyperactive-impulsive (HYPIMP), INATT and CD in the replication sample. PAE and the PAE*maternal alcohol dependence interaction increased the risk for ADHD and INATT. A broad genetic risk for ADHD was associated with all disorders except HYPIMP in the replication sample. Conclusion: This study further supports the trending evidence of a unique etiology of ADHD in those with PAE, and more specifically, that INATT and HYPIMP are affected according to two different mechanisms of action, independent of a genetic contribution due to either ADHD or alcohol dependence, both of which also were associated with a risk for INATT. The contribution of PAE to INATT and CD were the only consistent results across all definitions of alcohol exposure and in both datasets, indicating that PAE is a veritable risk for INATT and CD.
  • Loading...
    Thumbnail Image
    Item
    Gender-specific gene-environment interaction in alcohol dependence: the impact of daily life events and GABRA2
    (Springer, 2013-09) Perry, Brea L.; Pescosolido, Bernice A.; Bucholz, Kathleen; Edenberg, Howard; Kramer, John; Kuperman, Samuel; Schuckit, Marc Alan; Nurnberger Jr., John I.; Department of Biochemistry and Molecular Biology, IU School of Medicine
    Gender-moderated gene-environment interactions are rarely explored, raising concerns about inaccurate specification of etiological models and inferential errors. The current study examined the influence of gender, negative and positive daily life events, and GABRA2 genotype (SNP rs279871) on alcohol dependence, testing two- and three-way interactions between these variables using multi-level regression models fit to data from 2,281 White participants in the Collaborative Study on the Genetics of Alcoholism. Significant direct effects of variables of interest were identified, as well as gender-specific moderation of genetic risk on this SNP by social experiences. Higher levels of positive life events were protective for men with the high-risk genotype, but not among men with the low-risk genotype or women, regardless of genotype. Our findings support the disinhibition theory of alcohol dependence, suggesting that gender differences in social norms, constraints and opportunities, and behavioral undercontrol may explain men and women's distinct patterns of association.
  • Loading...
    Thumbnail Image
    Item
    Genes Encoding Enzymes Involved in Ethanol Metabolism
    (National Institute on Alcohol Abuse and Alcoholism, 2012) Hurley, Thomas D.; Edenberg, Howard J.; Biochemistry and Molecular Biology, School of Medicine
    The effects of beverage alcohol (ethanol) on the body are determined largely by the rate at which it and its main breakdown product, acetaldehyde, are metabolized after consumption. The main metabolic pathway for ethanol involves the enzymes alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). Seven different ADHs and three different ALDHs that metabolize ethanol have been identified. The genes encoding these enzymes exist in different variants (i.e., alleles), many of which differ by a single DNA building block (i.e., single nucleotide polymorphisms [SNPs]). Some of these SNPs result in enzymes with altered kinetic properties. For example, certain ADH1B and ADH1C variants that are commonly found in East Asian populations lead to more rapid ethanol breakdown and acetaldehyde accumulation in the body. Because acetaldehyde has harmful effects on the body, people carrying these alleles are less likely to drink and have a lower risk of alcohol dependence. Likewise, an ALDH2 variant with reduced activity results in acetaldehyde buildup and also has a protective effect against alcoholism. In addition to affecting drinking behaviors and risk for alcoholism, ADH and ALDH alleles impact the risk for esophageal cancer.
  • Loading...
    Thumbnail Image
    Item
    A Genome Wide Association Study of Interhemispheric Theta EEG Coherence: Implications for Neural Connectivity and Alcohol Use Behavior
    (Springer Nature, 2021) Meyers, Jacquelyn L.; Zhang, Jian; Chorlian, David B.; Pandey, Ashwini K.; Kamarajan, Chella; Wang, Jen-Chyong; Wetherill, Leah; Lai, Dongbing; Chao, Michael; Chan, Grace; Kinreich, Sivan; Kapoor, Manav; Bertelsen, Sarah; McClintick, Jeanette; Bauer, Lance; Hesselbrock, Victor; Kuperman, Samuel; Kramer, John; Salvatore, Jessica E.; Dick, Danielle M.; Agrawal, Arpana; Foroud, Tatiana; Edenberg, Howard J.; Goate, Alison; Porjesz, Bernice; Medical and Molecular Genetics, School of Medicine
    Aberrant connectivity of large-scale brain networks has been observed among individuals with alcohol use disorders (AUDs) as well as in those at risk, suggesting deficits in neural communication between brain regions in the liability to develop AUD. Electroencephalographical (EEG) coherence, which measures the degree of synchrony between brain regions, may be a useful measure of connectivity patterns in neural networks for studying the genetics of AUD. In 8810 individuals (6644 of European and 2166 of African ancestry) from the Collaborative Study on the Genetics of Alcoholism (COGA), we performed a Multi-Trait Analyses of genome-wide association studies (MTAG) on parietal resting-state theta (3-7 Hz) EEG coherence, which previously have been associated with AUD. We also examined developmental effects of GWAS findings on trajectories of neural connectivity in a longitudinal subsample of 2316 adolescent/young adult offspring from COGA families (ages 12-30) and examined the functional and clinical significance of GWAS variants. Six correlated single nucleotide polymorphisms located in a brain-expressed lincRNA (ENSG00000266213) on chromosome 18q23 were associated with posterior interhemispheric low theta EEG coherence (3-5 Hz). These same variants were also associated with alcohol use behavior and posterior corpus callosum volume, both in a subset of COGA and in the UK Biobank. Analyses in the subsample of COGA offspring indicated that the association of rs12954372 with low theta EEG coherence occurred only in females, most prominently between ages 25 and 30 (p < 2 × 10-9). Converging data provide support for the role of genetic variants on chromosome 18q23 in regulating neural connectivity and alcohol use behavior, potentially via dysregulated myelination. While findings were less robust, genome-wide associations were also observed with rs151174000 and parieto-frontal low theta coherence, rs14429078 and parieto-occipital interhemispheric high theta coherence, and rs116445911 with centro-parietal low theta coherence. These novel genetic findings highlight the utility of the endophenotype approach in enhancing our understanding of mechanisms underlying addiction susceptibility.
  • Loading...
    Thumbnail Image
    Item
    Identification of Functional Genetic Variants Associated with Alcohol Dependence and Related Phenotypes Using a High-Throughput Assay
    (Wiley, 2020-12) Thapa, Kriti S.; Chen, Andy B.; Lai, Dongbing; Xuei, Xiaoling; Wetherill, Leah; Tischfield, Jay A.; Liu, Yunlong; Edenberg, Howard J.; Biochemistry and Molecular Biology, School of Medicine
    Background: Genome-wide association studies (GWAS) of alcohol dependence (AD) and related phenotypes have identified multiple loci, but the functional variants underlying the loci have in most cases not been identified. Noncoding variants can influence phenotype by affecting gene expression; for example, variants in the 3' untranslated regions (3'UTR) can affect gene expression posttranscriptionally. Methods: We adapted a high-throughput assay known as PASSPORT-seq (parallel assessment of polymorphisms in miRNA target sites by sequencing) to identify among variants associated with AD and related phenotypes those that cause differential expression in neuronal cell lines. Based upon meta-analyses of alcohol-related traits in African American and European Americans in the Collaborative Study on the Genetics of Alcoholism, we tested 296 single nucleotide polymorphisms (SNPs with meta-analysis p values ≤ 0.001) that were located in 3'UTRs. Results: We identified 60 SNPs that affected gene expression (false discovery rate [FDR] < 0.05) in SH-SY5Y cells and 92 that affected expression in SK-N-BE(2) cells. Among these, 30 SNPs altered RNA levels in the same direction in both cell lines. Many of these SNPs reside in the binding sites of miRNAs and RNA-binding proteins and are expression quantitative trait loci of genes including KIF6,FRMD4A,CADM2,ADD2,PLK2, and GAS7. Conclusion: The SNPs identified in the PASSPORT-seq assay are functional variants that might affect the risk for AD and related phenotypes. Our study provides insights into gene regulation in AD and demonstrates the value of PASSPORT-seq as a tool to screen genetic variants in GWAS loci for one potential mechanism of action.
  • «
  • 1 (current)
  • 2
  • »
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University