- Browse by Subject
Browsing by Subject "Alcohol Exposure"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Alt Event Finder: a tool for extracting alternative splicing events from RNA-seq data.(BMC, 2012) Zhou, Ao; Breese, Marcus R.; Hao, Yangyang; Edenberg, Howard J.; Li, Lang; Skaar, Todd C.; Liu, YunlongBACKGROUND: Alternative splicing increases proteome diversity by expressing multiple gene isoforms that often differ in function. Identifying alternative splicing events from RNA-seq experiments is important for understanding the diversity of transcripts and for investigating the regulation of splicing. RESULTS: We developed Alt Event Finder, a tool for identifying novel splicing events by using transcript annotation derived from genome-guided construction tools, such as Cufflinks and Scripture. With a proper combination of alignment and transcript reconstruction tools, Alt Event Finder is capable of identifying novel splicing events in the human genome. We further applied Alt Event Finder on a set of RNA-seq data from rat liver tissues, and identified dozens of novel cassette exon events whose splicing patterns changed after extensive alcohol exposure. CONCLUSIONS: Alt Event Finder is capable of identifying de novo splicing events from data-driven transcript annotation, and is a useful tool for studying splicing regulation.Item Identification of transcription factor and microRNA binding sites in responsible to fetal alcohol syndrome(BioMed Central, 2008-03-20) Wang, Guohua; Wang, Xin; Wang, Yadong; Yang, Jack Y.; Li, Lang; Nephew, Kenneth P.; Edenberg, Howard J.; Zhou, Feng C.; Liu, Yunlong; Medicine, School of MedicineThis is a first report, using our MotifModeler informatics program, to simultaneously identify transcription factor (TF) and microRNA (miRNA) binding sites from gene expression microarray data. Based on the assumption that gene expression is controlled by combinatorial effects of transcription factors binding in the 5'-upstream regulatory region and miRNAs binding in the 3'-untranslated region (3'-UTR), we developed a model for (1) predicting the most influential cis-acting elements under a given biological condition, and (2) estimating the effects of those elements on gene expression levels. The regulatory regions, TF and miRNA, which mediate the differential genes expression in fetal alcohol syndrome were unknown; microarray data from alcohol exposure paradigm was used. The model predicted strong inhibitory effects of 5' cis-acting elements and stimulatory effects of 3'-UTR under alcohol treatment. Current predictive model derived a key hypothesis for the first time a novel role of miRNAs in gene expression changes associated with abnormal mouse embryo development after alcohol exposure. This suggests that disturbance of miRNA functions may contribute to the alcohol-induced developmental deficiencies.