ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Alanine"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Member of an Ancient Family of Bacterial Amino Acids Transporters Contributes to Chlamydia Nutritional Virulence and Immune Evasion
    (American Society for Microbiology, 2023) Banerjee, Arkaprabha; Sun, Yuan; Muramatsu, Matthew K.; Toh, Evelyn; Nelson, David E.; Microbiology and Immunology, School of Medicine
    Many obligate intracellular bacteria, including members of the genus Chlamydia, cannot synthesize a variety of amino acids de novo and acquire these from host cells via largely unknown mechanisms. Previously, we determined that a missense mutation in ctl0225, a conserved Chlamydia open reading frame of unknown function, mediated sensitivity to interferon gamma. Here, we show evidence that CTL0225 is a member of the SnatA family of neutral amino acid transporters that contributes to the import of several amino acids into Chlamydia cells. Further, we show that CTL0225 orthologs from two other distantly related obligate intracellular pathogens (Coxiella burnetii and Buchnera aphidicola) are sufficient to import valine into Escherichia coli. We also show that chlamydia infection and interferon exposure have opposing effects on amino acid metabolism, potentially explaining the relationship between CTL0225 and interferon sensitivity. Overall, we show that phylogenetically diverse intracellular pathogens use an ancient family of amino acid transporters to acquire host amino acids and provide another example of how nutritional virulence and immune evasion can be linked in obligate intracellular pathogens.
  • Loading...
    Thumbnail Image
    Item
    Chimeric agents derived from the functionalized amino acid, lacosamide, and the α-aminoamide, safinamide: evaluation of their inhibitory actions on voltage-gated sodium channels, and antiseizure and antinociception activities and comparison with lacosamide and safinamide
    (American Chemical Society, 2015-02-18) Park, Ki Duk; Yang, Xiao-Fang; Dustrude, Erik T.; Wang, Yuying; Ripsch, Matthew S.; White, Fletcher A.; Khanna, Rajesh; Kohn, Harold; Department of Psychiatry, IU School of Medicine
    The functionalized amino acid, lacosamide ((R)-2), and the α-aminoamide, safinamide ((S)-3), are neurological agents that have been extensively investigated and have displayed potent anticonvulsant activities in seizure models. Both compounds have been reported to modulate voltage-gated sodium channel activity. We have prepared a series of chimeric compounds, (R)-7-(R)-10, by merging key structural units in these two clinical agents, and then compared their activities with (R)-2 and (S)-3. Compounds were assessed for their ability to alter sodium channel kinetics for inactivation, frequency (use)-dependence, and steady-state activation and fast inactivation. We report that chimeric compounds (R)-7-(R)-10 in catecholamine A-differentiated (CAD) cells and embryonic rat cortical neurons robustly enhanced sodium channel inactivation at concentrations far lower than those required for (R)-2 and (S)-3, and that (R)-9 and (R)-10, unlike (R)-2 and (S)-3, produce sodium channel frequency (use)-dependence at low micromolar concentrations. We further show that (R)-7-(R)-10 displayed excellent anticonvulsant activities and pain-attenuating properties in the animal formalin model. Of these compounds, only (R)-7 reversed mechanical hypersensitivity in the tibial-nerve injury model for neuropathic pain in rats.
  • Loading...
    Thumbnail Image
    Item
    Efficient suppression of premature termination codons with alanine by engineered chimeric pyrrolysine tRNAs
    (Oxford University Press, 2024) Awawdeh, Aya; Tapia, Alejandro; Alshawi, Sarah A.; Dawodu, Olabode; Gaier, Sarah A.; Specht, Caitlin; Beaudoin, Jean-Denis; Tharp, Jeffery M.; Vargas-Rodriguez, Oscar; Biochemistry and Molecular Biology, School of Medicine
    Mutations that introduce premature termination codons (PTCs) within protein-coding genes are associated with incurable and severe genetic diseases. Many PTC-associated disorders are life-threatening and have no approved medical treatment options. Suppressor transfer RNAs (sup-tRNAs) with the capacity to translate PTCs represent a promising therapeutic strategy to treat these conditions; however, developing novel sup-tRNAs with high efficiency and specificity often requires extensive engineering and screening. Moreover, these efforts are not always successful at producing more efficient sup-tRNAs. Here we show that a pyrrolysine (Pyl) tRNA (tRNAPyl), which naturally translates the UAG stop codon, offers a favorable scaffold for developing sup-tRNAs that restore protein synthesis from PTC-containing genes. We created a series of rationally designed Pyl tRNAScaffold Suppressor-tRNAs (PASS-tRNAs) that are substrates of bacterial and human alanyl-tRNA synthetase. Using a PTC-containing fluorescent reporter gene, PASS-tRNAs restore protein synthesis to wild-type levels in bacterial cells. In human cells, PASS-tRNAs display robust and consistent PTC suppression in multiple reporter genes, including pathogenic mutations in the tumor suppressor gene BRCA1 associated with breast and ovarian cancer. Moreover, PTC suppression occurred with high codon specificity and no observed cellular dysregulation. Collectively, these results unveil a new class of sup-tRNAs with encouraging potential for tRNA-based therapeutic applications.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University