- Browse by Subject
Browsing by Subject "Ageing"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume(Springer, 2022) Milicic, Lidija; Vacher, Michael; Porter, Tenielle; Doré, Vincent; Burnham, Samantha C.; Bourgeat, Pierrick; Shishegar, Rosita; Doecke, James; Armstrong, Nicola J.; Tankard, Rick; Maruff, Paul; Masters, Colin L.; Rowe, Christopher C.; Villemagne, Victor L.; Laws, Simon M.; Alzheimer’s Disease Neuroimaging Initiative (ADNI); Australian Imaging Biomarkers and Lifestyle (AIBL) Study; Medical and Molecular Genetics, School of MedicineThe concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer's Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer's Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer's disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes.Item Gpr17 deficiency in POMC neurons ameliorates the metabolic derangements caused by long-term high-fat diet feeding(Springer Nature, 2019-10-14) Reilly, Austin M.; Zhou, Shudi; Panigrahi, Sunil K.; Yan, Shijun; Conley, Jason M.; Sheets, Patrick L.; Wardlaw, Sharon L.; Ren, Hongxia; Medicine, School of MedicineBACKGROUND: Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARH) control energy homeostasis by sensing hormonal and nutrient cues and activating secondary melanocortin sensing neurons. We identified the expression of a G protein-coupled receptor, Gpr17, in the ARH and hypothesized that it contributes to the regulatory function of POMC neurons on metabolism. METHODS: In order to test this hypothesis, we generated POMC neuron-specific Gpr17 knockout (PGKO) mice and determined their energy and glucose metabolic phenotypes on normal chow diet (NCD) and high-fat diet (HFD). RESULTS: Adult PGKO mice on NCD displayed comparable body composition and metabolic features measured by indirect calorimetry. By contrast, PGKO mice on HFD demonstrated a sexually dimorphic phenotype with female PGKO mice displaying better metabolic homeostasis. Notably, female PGKO mice gained significantly less body weight and adiposity (p < 0.01), which was associated with increased energy expenditure, locomotor activity, and respiratory quotient, while males did not have an overt change in energy homeostasis. Though PGKO mice of both sexes had comparable glucose and insulin tolerance, detailed analyses of liver gene expression and serum metabolites indicate that PGKO mice could have reduced gluconeogenesis and increased lipid utilization on HFD. To elucidate the central-based mechanism(s) underlying the better-preserved energy and glucose homeostasis in PGKO mice on HFD, we examined the electrophysiological properties of POMC neurons and found Gpr17 deficiency led to increased spontaneous action potentials. Moreover, PGKO mice, especially female knockouts, had increased POMC-derived alpha-melanocyte stimulating hormone and beta-endorphin despite a comparable level of prohormone POMC in their hypothalamic extracts. CONCLUSIONS: Gpr17 deficiency in POMC neurons protects metabolic homeostasis in a sex-dependent manner during dietary and aging challenges, suggesting that Gpr17 could be an effective anti-obesity target in specific populations with poor metabolic control.Item Targeted metabolomics reveals plasma biomarkers and metabolic alterations of the aging process in healthy young and older adults(Springer, 2023) Jasbi, Paniz; Nikolich‑Žugich, Janko; Patterson, Jeffrey; Knox, Kenneth S.; Jin, Yan; Weinstock, George M.; Smith, Patricia; Twigg, Homer L., III; Gu, Haiwei; Medicine, School of MedicineWith the exponential growth in the older population in the coming years, many studies have aimed to further investigate potential biomarkers associated with the aging process and its incumbent morbidities. Age is the largest risk factor for chronic disease, likely due to younger individuals possessing more competent adaptive metabolic networks that result in overall health and homeostasis. With aging, physiological alterations occur throughout the metabolic system that contribute to functional decline. In this cross-sectional analysis, a targeted metabolomic approach was applied to investigate the plasma metabolome of young (21-40y; n = 75) and older adults (65y + ; n = 76). A corrected general linear model (GLM) was generated, with covariates of gender, BMI, and chronic condition score (CCS), to compare the metabolome of the two populations. Among the 109 targeted metabolites, those associated with impaired fatty acid metabolism in the older population were found to be most significant: palmitic acid (p < 0.001), 3-hexenedioic acid (p < 0.001), stearic acid (p = 0.005), and decanoylcarnitine (p = 0.036). Derivatives of amino acid metabolism, 1-methlyhistidine (p = 0.035) and methylhistamine (p = 0.027), were found to be increased in the younger population and several novel metabolites were identified, such as cadaverine (p = 0.034) and 4-ethylbenzoic acid (p = 0.029). Principal component analysis was conducted and highlighted a shift in the metabolome for both groups. Receiver operating characteristic analyses of partial least squares-discriminant analysis models showed the candidate markers to be more powerful indicators of age than chronic disease. Pathway and enrichment analyses uncovered several pathways and enzymes predicted to underlie the aging process, and an integrated hypothesis describing functional characteristics of the aging process was synthesized. Compared to older participants, the young group displayed greater abundance of metabolites related to lipid and nucleotide synthesis; older participants displayed decreased fatty acid oxidation and reduced tryptophan metabolism, relative to the young group. As a result, we offer a better understanding of the aging metabolome and potentially reveal new biomarkers and predicted mechanisms for future study.Item Urolithin A augments angiogenic pathways in skeletal muscle by bolstering NAD+ and SIRT1(NPG, 2020-11-11) Ghosh, Nandini; Das, Amitava; Biswas, Nirupam; Gnyawali, Surya; Singh, Kanhaiya; Gorain, Mahadeo; Polcyn, Carly; Khanna, Savita; Roy, Sashwati; Sen, Chandan K.; Surgery, School of MedicineUrolithin A (UA) is a natural compound that is known to improve muscle function. In this work we sought to evaluate the effect of UA on muscle angiogenesis and identify the underlying molecular mechanisms. C57BL/6 mice were administered with UA (10 mg/body weight) for 12–16 weeks. ATP levels and NAD+ levels were measured using in vivo 31P NMR and HPLC, respectively. UA significantly increased ATP and NAD+ levels in mice skeletal muscle. Unbiased transcriptomics analysis followed by Ingenuity Pathway Analysis (IPA) revealed upregulation of angiogenic pathways upon UA supplementation in murine muscle. The expression of the differentially regulated genes were validated using quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Angiogenic markers such as VEGFA and CDH5 which were blunted in skeletal muscles of 28 week old mice were found to be upregulated upon UA supplementation. Such augmentation of skeletal muscle vascularization was found to be bolstered via Silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1α) pathway. Inhibition of SIRT1 by selisistat EX527 blunted UA-induced angiogenic markers in C2C12 cells. Thus this work provides maiden evidence demonstrating that UA supplementation bolsters skeletal muscle ATP and NAD+ levels causing upregulated angiogenic pathways via a SIRT1-PGC-1α pathway.