- Browse by Subject
Browsing by Subject "Adult stem cells"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Electroacupuncture Promotes Central Nervous System-Dependent Release of Mesenchymal Stem Cells(Wiley, 2017-05) Salazar, Tatiana E.; Richardson, Matthew R.; Beli, Eleni; Ripsch, Matthew S.; George, John; Kim, Youngsook; Duan, Yaqian; Moldovan, Leni; Yan, Yuanqing; Bhatwadekar, Ashay; Jadhav, Vaishnavi; Smith, Jared A.; McGorray, Susan; Bertone, Alicia L.; Traktuev, Dmitri O.; March, Keith L.; Colon-Perez, Luis M.; Avin, Keith; Sims, Emily; Mund, Julie A.; Case, Jamie; Deng, Shaolin; Kim, Min Su; McDavitt, Bruce; Boulton, Michael E.; Thinschmidt, Jeffrey; Calzi, Sergio Li; Fitz, Stephanie D.; Fuchs, Robyn K.; Warden, Stuart J.; McKinley, Todd; Shekhar, Anantha; Febo, Marcelo; Johnson, Phillip L.; Chang, Lung Ji; Gao, Zhanguo; Kolonin, Mikhail G.; Lai, Song; Ma, Jinfeng; Dong, Xinzhong; White, Fletcher A.; Xie, Huisheng; Yoder, Mervin C.; Grant, Maria B.; Ophthalmology, School of MedicineElectroacupuncture (EA) performed in rats and humans using limb acupuncture sites, LI-4 and LI-11, and GV-14 and GV-20 (humans) and Bai-hui (rats) increased functional connectivity between the anterior hypothalamus and the amygdala and mobilized mesenchymal stem cells (MSCs) into the systemic circulation. In human subjects, the source of the MSC was found to be primarily adipose tissue, whereas in rodents the tissue sources were considered more heterogeneous. Pharmacological disinhibition of rat hypothalamus enhanced sympathetic nervous system (SNS) activation and similarly resulted in a release of MSC into the circulation. EA-mediated SNS activation was further supported by browning of white adipose tissue in rats. EA treatment of rats undergoing partial rupture of the Achilles tendon resulted in reduced mechanical hyperalgesia, increased serum interleukin-10 levels and tendon remodeling, effects blocked in propranolol-treated rodents. To distinguish the afferent role of the peripheral nervous system, phosphoinositide-interacting regulator of transient receptor potential channels (Pirt)-GCaMP3 (genetically encoded calcium sensor) mice were treated with EA acupuncture points, ST-36 and LIV-3, and GV-14 and Bai-hui and resulted in a rapid activation of primary sensory neurons. EA activated sensory ganglia and SNS centers to mediate the release of MSC that can enhance tissue repair, increase anti-inflammatory cytokine production and provide pronounced analgesic relief.Item Engineering bioactive nanoparticles to rejuvenate vascular progenitor cells(Springer Nature, 2022-06-29) Bui, Loan; Edwards, Shanique; Hall, Eva; Alderfer, Laura; Round, Kellen; Owen, Madeline; Sainaghi, Pietro; Zhang, Siyuan; Nallathamby, Prakash D.; Haneline, Laura S.; Hanjaya-Putra, Donny; Pediatrics, School of MedicineFetal exposure to gestational diabetes mellitus (GDM) predisposes children to future health complications including type-2 diabetes mellitus, hypertension, and cardiovascular disease. A key mechanism by which these complications occur is through stress-induced dysfunction of endothelial progenitor cells (EPCs), including endothelial colony-forming cells (ECFCs). Although several approaches have been previously explored to restore endothelial function, their widespread adoption remains tampered by systemic side effects of adjuvant drugs and unintended immune response of gene therapies. Here, we report a strategy to rejuvenate circulating vascular progenitor cells by conjugation of drug-loaded liposomal nanoparticles directly to the surface of GDM-exposed ECFCs (GDM-ECFCs). Bioactive nanoparticles can be robustly conjugated to the surface of ECFCs without altering cell viability and key progenitor phenotypes. Moreover, controlled delivery of therapeutic drugs to GDM-ECFCs is able to normalize transgelin (TAGLN) expression and improve cell migration, which is a critical key step in establishing functional vascular networks. More importantly, sustained pseudo-autocrine stimulation with bioactive nanoparticles is able to improve in vitro and in vivo vasculogenesis of GDM-ECFCs. Collectively, these findings highlight a simple, yet promising strategy to rejuvenate GDM-ECFCs and improve their therapeutic potential. Promising results from this study warrant future investigations on the prospect of the proposed strategy to improve dysfunctional vascular progenitor cells in the context of other chronic diseases, which has broad implications for addressing various cardiovascular complications, as well as advancing tissue repair and regenerative medicine.