ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Adaptation models"

Now showing 1 - 2 of 2
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Adversarial Dual Distinct Classifiers for Unsupervised Domain Adaptation
    (IEEE, 2021) Jing, Taotao; Ding, Zhengming; Electrical and Computer Engineering, School of Engineering and Technology
    Unsupervised Domain adaptation (UDA) attempts to recognize the unlabeled target samples by building a learning model from a differently-distributed labeled source domain. Conventional UDA concentrates on extracting domain-invariant features through deep adversarial networks. However, most of them seek to match the different domain feature distributions, without considering the task-specific decision boundaries across various classes. In this paper, we propose a novel Adversarial Dual Distinct Classifiers Network (AD 2 CN) to align the source and target domain data distribution simultaneously with matching task-specific category boundaries. To be specific, a domain-invariant feature generator is exploited to embed the source and target data into a latent common space with the guidance of discriminative cross-domain alignment. Moreover, we naturally design two different structure classifiers to identify the unlabeled target samples over the supervision of the labeled source domain data. Such dual distinct classifiers with various architectures can capture diverse knowledge of the target data structure from different perspectives. Extensive experimental results on several cross-domain visual benchmarks prove the model's effectiveness by comparing it with other state-of-the-art UDA.
  • Loading...
    Thumbnail Image
    Item
    Maximum Density Divergence for Domain Adaptation
    (IEEE, 2021) Li, Jingjing; Chen, Erpeng; Ding, Zhengming; Zhu, Lei; Lu, Ke; Shen, Heng Tao; Computer Information and Graphics Technology, Purdue School of Engineering and Technology
    Unsupervised domain adaptation addresses the problem of transferring knowledge from a well-labeled source domain to an unlabeled target domain where the two domains have distinctive data distributions. Thus, the essence of domain adaptation is to mitigate the distribution divergence between the two domains. The state-of-the-art methods practice this very idea by either conducting adversarial training or minimizing a metric which defines the distribution gaps. In this paper, we propose a new domain adaptation method named adversarial tight match (ATM) which enjoys the benefits of both adversarial training and metric learning. Specifically, at first, we propose a novel distance loss, named maximum density divergence (MDD), to quantify the distribution divergence. MDD minimizes the inter-domain divergence ("match" in ATM) and maximizes the intra-class density ("tight" in ATM). Then, to address the equilibrium challenge issue in adversarial domain adaptation, we consider leveraging the proposed MDD into adversarial domain adaptation framework. At last, we tailor the proposed MDD as a practical learning loss and report our ATM. Both empirical evaluation and theoretical analysis are reported to verify the effectiveness of the proposed method. The experimental results on four benchmarks, both classical and large-scale, show that our method is able to achieve new state-of-the-art performance on most evaluations.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University