- Browse by Subject
Browsing by Subject "Acute respiratory distress syndrome"
Now showing 1 - 10 of 11
Results Per Page
Sort Options
Item A cortactin CTTN coding SNP contributes to lung vascular permeability and inflammatory disease severity in African descent subject(Elsevier, 2022) Belvitch, Patrick; Casanova, Nancy; Sun, Xiaoguang; Camp, Sara M.; Sammani, Saad; Brown, Mary E.; Mascarhenas, Joseph; Lynn, Heather; Adyshev, Djanybek; Siegler, Jessica; Desai, Ankit; Seyed-Saadat, Laleh; Rizzo, Alicia; Bime, Christian; Shekhawat, Gajendra S.; Dravid, Vinayak P.; Reilly, John P.; Jones, Tiffanie K.; Feng, Rui; Letsiou, Eleftheria; Meyer, Nuala J.; Ellis, Nathan; Garcia, Joe G. N.; Dudek, Steven M.; Medicine, School of MedicineThe cortactin gene (CTTN), encoding an actin-binding protein critically involved in cytoskeletal dynamics and endothelial cell (EC) barrier integrity, contains single nucleotide polymorphisms (SNPs) associated with severe asthma in Black patients. As loss of lung EC integrity is a major driver of mortality in the Acute Respiratory Distress Syndrome (ARDS), sepsis, and the acute chest syndrome (ACS), we speculated CTTN SNPs that alter EC barrier function will associate with clinical outcomes from these types of conditions in Black patients. In case-control studies, evaluation of a nonsynonymous CTTN coding SNP Ser484Asn (rs56162978, G/A) in a severe sepsis cohort (725 Black subjects) revealed significant association with increased risk of sepsis mortality. In a separate cohort of sickle cell disease (SCD) subjects with and without ACS (177 SCD Black subjects), significantly increased risk of ACS and increased ACS severity (need for mechanical ventilation) was observed in carriers of the A allele. Human lung EC expressing the cortactin S484N transgene exhibited: (i) delayed EC barrier recovery following thrombin-induced permeability; (ii) reduced levels of critical Tyr486 cortactin phosphorylation; (iii) inhibited binding to the cytoskeletal regulator, nmMLCK; and (iv) attenuated EC barrier-promoting lamellipodia dynamics and biophysical responses. ARDS-challenged Cttn+/- heterozygous mice exhibited increased lung vascular permeability (compared to wild-type mice) which was significantly attenuated by IV delivery of liposomes encargoed with CTTN WT transgene but not by CTTN S484N transgene. In summary, these studies suggest that the CTTN S484N coding SNP contributes to severity of inflammatory injury in Black patients, potentially via delayed vascular barrier restoration.Item Acute respiratory distress syndrome in the cardiothoracic patient: State of the art and use of veno-venous extracorporeal membrane oxygenation(Elsevier, 2021-12) Copeland, Hannah; Levine, Deborah; Morton, John; Hayanga, J.W. Awori; Surgery, School of MedicineCentral Message: Acute respiratory distress syndrome after cardiopulmonary bypass can be managed with veno-venous extracorporeal membrane oxygenation.Item Assessment of Right Ventricular Function in the Research Setting: Knowledge Gaps and Pathways Forward. An Official American Thoracic Society Research Statement(American Thoracic Society, 2018-08-15) Lahm, Tim; Douglas, Ivor S.; Archer, Stephen L.; Bogaard, Harm J.; Chesler, Naomi C.; Haddad, Francois; Hemnes, Anna R.; Kawut, Steven M.; Kline, Jeffrey A.; Kolb, Todd M.; Mathai, Stephen C.; Mercier, Olaf; Michelakis, Evangelos D.; Naeije, Robert; Tuder, Rubin M.; Ventetuolo, Corey E.; Vieillard-Baron, Antoine; Voelkel, Norbert F.; Vonk-Noordegraaf, Anton; Medicine, School of MedicineBACKGROUND: Right ventricular (RV) adaptation to acute and chronic pulmonary hypertensive syndromes is a significant determinant of short- and long-term outcomes. Although remarkable progress has been made in the understanding of RV function and failure since the meeting of the NIH Working Group on Cellular and Molecular Mechanisms of Right Heart Failure in 2005, significant gaps remain at many levels in the understanding of cellular and molecular mechanisms of RV responses to pressure and volume overload, in the validation of diagnostic modalities, and in the development of evidence-based therapies. METHODS: A multidisciplinary working group of 20 international experts from the American Thoracic Society Assemblies on Pulmonary Circulation and Critical Care, as well as external content experts, reviewed the literature, identified important knowledge gaps, and provided recommendations. RESULTS: This document reviews the knowledge in the field of RV failure, identifies and prioritizes the most pertinent research gaps, and provides a prioritized pathway for addressing these preclinical and clinical questions. The group identified knowledge gaps and research opportunities in three major topic areas: 1) optimizing the methodology to assess RV function in acute and chronic conditions in preclinical models, human studies, and clinical trials; 2) analyzing advanced RV hemodynamic parameters at rest and in response to exercise; and 3) deciphering the underlying molecular and pathogenic mechanisms of RV function and failure in diverse pulmonary hypertension syndromes. CONCLUSIONS: This statement provides a roadmap to further advance the state of knowledge, with the ultimate goal of developing RV-targeted therapies for patients with RV failure of any etiology.Item Critical Care Management of a Severe Acute Respiratory Distress Syndrome COVID-19 Patient With Control Cesarean Section(Cureus, 2022-02-27) Chang, Eduardo E.; Cordoba, Marcos; Vellanki, Sruthi; Trikannad Ashwini Kumar, Anup Kumar; Segura, Esther; Medicine, School of MedicineWe share our experience of one 29-year-old female, G2 P1, with acute respiratory distress syndrome (ARDS) and at 30 weeks of pregnancy. The 30-week gravid uterus in combination with a poor ventilation-perfusion ratio creates a restrictive lung pattern that may prove to be lethal for both the mother and baby. Due to her rapid deterioration and increased hemodynamic instability we opted for controlled delivery in the operating room with an ICU physician, a Neonatologist, and an Obstetric team. At 3.27 minutes from induction, the baby was born with Apgar scores of 7 and 8. The mother was placed on a RotoProne® bed, treated with remdesivir, steroids, and was subsequently extubated seven days later. The newborn was admitted to the Neonatal Intensive Care Unit (NICU) after delivery. We have reviewed the literature and provided a concise set of recommendations based on our field experience and current world literature review. Prompt delivery in a controlled environment with multiple resuscitating teams provided expeditious treatment of both patients, maintaining oxygenation and perfusion while keeping hemodynamic stability. The controlled environment and the proximity of all teams avoided deleterious consequences to the unborn baby. This is an example where the risk of keeping the baby in the womb outweighs the premature delivery into a NICU. Both mother and baby were downgraded from their respective Intensive Care Units (ICUs) and discharged home in one month.Item Early Use of Adjunctive Therapies for Pediatric Acute Respiratory Distress Syndrome: A PARDIE Study(American Thoracic Society, 2020-06) Rowan, Courtney M.; Klein, Margaret J.; Hsing, Deyin Doreen; Dahmer, Mary K.; Spinella, Philip C.; Emeriaud, Guillaume; Hassinger, Amanda B.; Piñeres-Olave, Byron E.; Flori, Heidi R.; Haileselassie, Bereketeab; Lopez-Fernandez, Yolanda M.; Chima, Ranjit S.; Shein, Steven L.; Maddux, Aline B.; Lillie, Jon; Izquierdo, Ledys; Kneyber, Martin C.J.; Smith, Lincoln S.; Khemani, Robinder G.; Thomas, Neal J.; Yehya, Nadir; Pediatrics, School of MedicineRationale: Few data exist to guide early adjunctive therapy use in pediatric acute respiratory distress syndrome (PARDS).Objectives: To describe contemporary use of adjunctive therapies for early PARDS as a framework for future investigations.Methods: This was a preplanned substudy of a prospective, international, cross-sectional observational study of children with PARDS from 100 centers over 10 study weeks.Measurements and Main Results: We investigated six adjunctive therapies for PARDS: continuous neuromuscular blockade, corticosteroids, inhaled nitric oxide (iNO), prone positioning, high-frequency oscillatory ventilation (HFOV), and extracorporeal membrane oxygenation. Almost half (45%) of children with PARDS received at least one therapy. Variability was noted in the median starting oxygenation index of each therapy; corticosteroids started at the lowest oxygenation index (13.0; interquartile range, 7.6-22.0) and HFOV at the highest (25.7; interquartile range, 16.7-37.3). Continuous neuromuscular blockade was the most common, used in 31%, followed by iNO (13%), corticosteroids (10%), prone positioning (10%), HFOV (9%), and extracorporeal membrane oxygenation (3%). Steroids, iNO, and HFOV were associated with comorbidities. Prone positioning and HFOV were more common in middle-income countries and less frequently used in North America. The use of multiple ancillary therapies increased over the first 3 days of PARDS, but there was not an easily identifiable pattern of combination or order of use.Conclusions: The contemporary description of prevalence, combinations of therapies, and oxygenation threshold for which the therapies are applied is important for design of future studies. Region of the world, income, and comorbidities influence adjunctive therapy use and are important variables to include in PARDS investigations.Item Executive Summary of the Second International Guidelines for the Diagnosis and Management of Pediatric Acute Respiratory Distress Syndrome (PALICC-2)(Wolters Kluwer, 2023) Emeriaud, Guillaume; López-Fernández, Yolanda M.; Iyer, Narayan Prabhu; Bembea, Melania M.; Agulnik, Asya; Barbaro, Ryan P.; Baudin, Florent; Bhalla, Anoopindar; de Carvalho, Werther Brunow; Carroll, Christopher L.; Cheifetz, Ira M.; Chisti, Mohammod J.; Cruces, Pablo; Curley, Martha A. Q.; Dahmer, Mary K.; Dalton, Heidi J.; Erickson, Simon J.; Essouri, Sandrine; Fernández, Analía; Flori, Heidi R.; Grunwell, Jocelyn R.; Jouvet, Philippe; Killien, Elizabeth Y.; Kneyber, Martin C. J.; Kudchadkar, Sapna R.; Korang, Steven Kwasi; Lee, Jan Hau; Macrae, Duncan J.; Maddux, Aline; Alapont, Vicent Modesto I.; Morrow, Brenda M.; Nadkarni, Vinay M.; Napolitano, Natalie; Newth, Christopher J. L.; Pons-Odena, Martí; Quasney, Michael W.; Rajapreyar, Prakadeshwari; Rambaud, Jerome; Randolph, Adrienne G.; Rimensberger, Peter; Rowan, Courtney M.; Sanchez-Pinto, L. Nelson; Sapru, Anil; Sauthier, Michael; Shein, Steve L.; Smith, Lincoln S.; Steffen, Katerine; Takeuchi, Muneyuki; Thomas, Neal J.; Tse, Sze Man; Valentine, Stacey; Ward, Shan; Watson, R. Scott; Yehya, Nadir; Zimmerman, Jerry J.; Khemani, Robinder G.; Pediatrics, School of MedicineObjectives: We sought to update our 2015 work in the Second Pediatric Acute Lung Injury Consensus Conference (PALICC-2) guidelines for the diagnosis and management of pediatric acute respiratory distress syndrome (PARDS), considering new evidence and topic areas that were not previously addressed. Design: International consensus conference series involving 52 multidisciplinary international content experts in PARDS and four methodology experts from 15 countries, using consensus conference methodology, and implementation science. Setting: Not applicable. Patients: Patients with or at risk for PARDS. Interventions: None. Measurements and main results: Eleven subgroups conducted systematic or scoping reviews addressing 11 topic areas: 1) definition, incidence, and epidemiology; 2) pathobiology, severity, and risk stratification; 3) ventilatory support; 4) pulmonary-specific ancillary treatment; 5) nonpulmonary treatment; 6) monitoring; 7) noninvasive respiratory support; 8) extracorporeal support; 9) morbidity and long-term outcomes; 10) clinical informatics and data science; and 11) resource-limited settings. The search included MEDLINE, EMBASE, and CINAHL Complete (EBSCOhost) and was updated in March 2022. Grading of Recommendations, Assessment, Development, and Evaluation methodology was used to summarize evidence and develop the recommendations, which were discussed and voted on by all PALICC-2 experts. There were 146 recommendations and statements, including: 34 recommendations for clinical practice; 112 consensus-based statements with 18 on PARDS definition, 55 on good practice, seven on policy, and 32 on research. All recommendations and statements had agreement greater than 80%. Conclusions: PALICC-2 recommendations and consensus-based statements should facilitate the implementation and adherence to the best clinical practice in patients with PARDS. These results will also inform the development of future programs of research that are crucially needed to provide stronger evidence to guide the pediatric critical care teams managing these patients.Item Extracorporeal Membrane Oxygenation for Acute Pediatric Respiratory Failure(Springer Nature, 2018-07-18) Friedman, Matthew; Hobson, Michael; Pediatrics, School of MedicineThe use of extracorporeal membrane oxygenation (ECMO) to support children with acute respiratory failure has steadily increased over the past several decades, with major advancements having been made in the care of these children. There are, however, many controversies regarding indications for initiating ECMO in this setting and the appropriate management strategies thereafter. Broad indications for ECMO include hypoxia, hypercarbia, and severe air leak syndrome, with hypoxia being the most common. There are many disease-specific considerations when evaluating children for ECMO, but there are currently very few, if any, absolute contraindications. Venovenous rather than veno-arterial ECMO cannulation is the preferred configuration for ECMO support of acute respiratory failure due to its superior side-effect profile. The approach to lung management on ECMO is variable and should be individualized to the patient, with the main goal of reducing the risk of VILI. ECMO is a relatively rare intervention, and there are likely a minimum number of cases per year at a given center to maintain competency. Patients who have prolonged ECMO runs (i.e., greater than 21 days) are less likely to survive, though no absolute duration of ECMO that would mandate withdrawal of ECMO support can be currently recommended.Item Identification of predictive patient characteristics for assessing the probability of COVID-19 in-hospital mortality(Public Library of Science, 2024) Rajwa, Bartek; Naved, Md Mobasshir Arshed; Adibuzzaman, Mohammad; Grama, Ananth Y.; Khan, Babar A.; Dundar, M. Murat; Rochet, Jean-Christophe; Computer Science, Luddy School of Informatics, Computing, and EngineeringAs the world emerges from the COVID-19 pandemic, there is an urgent need to understand patient factors that may be used to predict the occurrence of severe cases and patient mortality. Approximately 20% of SARS-CoV-2 infections lead to acute respiratory distress syndrome caused by the harmful actions of inflammatory mediators. Patients with severe COVID-19 are often afflicted with neurologic symptoms, and individuals with pre-existing neurodegenerative disease have an increased risk of severe COVID-19. Although collectively, these observations point to a bidirectional relationship between severe COVID-19 and neurologic disorders, little is known about the underlying mechanisms. Here, we analyzed the electronic health records of 471 patients with severe COVID-19 to identify clinical characteristics most predictive of mortality. Feature discovery was conducted by training a regularized logistic regression classifier that serves as a machine-learning model with an embedded feature selection capability. SHAP analysis using the trained classifier revealed that a small ensemble of readily observable clinical features, including characteristics associated with cognitive impairment, could predict in-hospital mortality with an accuracy greater than 0.85 (expressed as the area under the ROC curve of the classifier). These findings have important implications for the prioritization of clinical measures used to identify patients with COVID-19 (and, potentially, other forms of acute respiratory distress syndrome) having an elevated risk of death.Item Pulmonary Complications of Pediatric Hematopoietic Cell Transplantation. A National Institutes of Health Workshop Summary(American Thoracic Society, 2021) Tamburro, Robert F.; Cooke, Kenneth R.; Davies, Stella M.; Goldfarb, Samuel; Hagood, James S.; Srinivasan, Ashok; Steiner, Marie E.; Stokes, Dennis; DiFronzo, Nancy; El-Kassar, Nahed; Shelburne, Nonniekaye; Natarajan, Aruna; Pulmonary Complications of Pediatric Hematopoietic Cell Transplantation Workshop Participants; Medicine, School of MedicineApproximately 2,500 pediatric hematopoietic cell transplants (HCTs), most of which are allogeneic, are performed annually in the United States for life-threatening malignant and nonmalignant conditions. Although HCT is undertaken with curative intent, post-HCT complications limit successful outcomes, with pulmonary dysfunction representing the leading cause of nonrelapse mortality. To better understand, predict, prevent, and/or treat pulmonary complications after HCT, a multidisciplinary group of 33 experts met in a 2-day National Institutes of Health Workshop to identify knowledge gaps and research strategies most likely to improve outcomes. This summary of Workshop deliberations outlines the consensus focus areas for future research.Item Veno-venous ECLS rescue for a heart transplant recipient with COVID-19, a case report(Sage, 2023) Copeland, Hannah; Baran, David A.; Morton, John; Rodriguez, Vicente; Fernandes, Eustace; Mohammed, Asim; Surgery, School of MedicineThe potential for increased rates of morbidity of SARS-CoV-2 within immunocompromised populations has been of concern since the pandemic’s onset. Transplant providers and patients can face particularly challenging situations, in the current settings as data continues to emerge for the prevention and treatment of the immunocompromised subpopulation. This case report details a patient 9-months post orthotopic heart transplant that developed SARS-CoV-2 infection despite two prior doses of the Pfizer-BioNtech COVID-19 vaccine, and had successful rescue from refractory hypoxemia with veno-venous extracorporeal membrane oxygenation (VV ECLS).