- Browse by Subject
Browsing by Subject "Activating Transcription Factor 4"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Transcription factor ATF4 directs basal and stress-induced gene expression in the unfolded protein response and cholesterol metabolism in the liver(American Society for Cell Biology, 2016-05-01) Fusakio, Michael E.; Willy, Jeffrey A.; Wang, Yongping; Mirek, Emily T.; Al Baghdadi, Rana J. T.; Adams, Christopher M.; Anthony, Tracy G.; Wek, Ronald C.; Department of Biochemistry & Molecular Biology, IU School of MedicineDisturbances in protein folding and membrane compositions in the endoplasmic reticulum (ER) elicit the unfolded protein response (UPR). Each of three UPR sensory proteins-PERK (PEK/EIF2AK3), IRE1, and ATF6-is activated by ER stress. PERK phosphorylation of eIF2 represses global protein synthesis, lowering influx of nascent polypeptides into the stressed ER, coincident with preferential translation of ATF4 (CREB2). In cultured cells, ATF4 induces transcriptional expression of genes directed by the PERK arm of the UPR, including genes involved in amino acid metabolism, resistance to oxidative stress, and the proapoptotic transcription factor CHOP (GADD153/DDIT3). In this study, we characterize whole-body and tissue-specific ATF4-knockout mice and show in liver exposed to ER stress that ATF4 is not required for CHOP expression, but instead ATF6 is a primary inducer. RNA-Seq analysis indicates that ATF4 is responsible for a small portion of the PERK-dependent UPR genes and reveals a requirement for expression of ATF4 for expression of genes involved in oxidative stress response basally and cholesterol metabolism both basally and under stress. Consistent with this pattern of gene expression, loss of ATF4 resulted in enhanced oxidative damage, and increased free cholesterol in liver under stress accompanied by lowered cholesterol in sera.Item Translational Repression Protects Human Keratinocytes from UVB-Induced Apoptosis through a Discordant eIF2 Kinase Stress Response(Nature Publishing Group, 2015-10) Collier, Ann E.; Wek, Ronald C.; Spandau, Dan F.; Department of Dermatology, IU School of MedicineThis study delineates the mechanisms by which UVB regulates protein synthesis in human keratinocytes and the importance of translational control in cell survival. Translation initiation is regulated by phosphorylation of eukaryotic initiation factor 2 (eIF2-P) that causes decreased global protein synthesis coincident with enhanced translation of selected stress-related transcripts, such as activating transcription factor 4 (ATF4). ATF4 is a transcriptional activator of the integrated stress response (ISR) that has cytoprotective functions as well as apoptotic signals through the downstream transcriptional regulator C/EBP homologous protein (CHOP; GADD153/DDIT3). We determined that UVB irradiation is a potent inducer of eIF2-P in keratinocytes, leading to decreased levels of translation initiation. However, expression of ATF4 or CHOP was not induced by UVB as compared with traditional ISR activators. The rationale for this discordant response is that ATF4 mRNA is reduced by UVB, and despite its ability to be preferentially translated, there are diminished levels of available transcript. Forced expression of ATF4 and CHOP protein before UVB irradiation significantly enhanced apoptosis, suggesting that this portion of the ISR is deleterious in keratinocytes following UVB. Inhibition of eIF2-P and translational control reduced viability following UVB that was alleviated by cycloheximide (CHX), indicating that translation repression through eIF2-P is central to keratinocyte survival.