ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Acoustics"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Conventional, Bayesian, and Modified Prony's methods for characterizing fast and slow waves in equine cancellous bone
    (AIP Publishing, 2015-08) Groopman, Amber M.; Katz, Jonathan I.; Fujita, Fuminori; Matsukawa, Mami; Mizuno, Katsunori; Wear, Keith A.; Miller, James G.; Department of Radiology and Imaging Sciences, IU School of Medicine
    Conventional, Bayesian, and the modified least-squares Prony's plus curve-fitting (MLSP + CF) methods were applied to data acquired using 1 MHz center frequency, broadband transducers on a single equine cancellous bone specimen that was systematically shortened from 11.8 mm down to 0.5 mm for a total of 24 sample thicknesses. Due to overlapping fast and slow waves, conventional analysis methods were restricted to data from sample thicknesses ranging from 11.8 mm to 6.0 mm. In contrast, Bayesian and MLSP + CF methods successfully separated fast and slow waves and provided reliable estimates of the ultrasonic properties of fast and slow waves for sample thicknesses ranging from 11.8 mm down to 3.5 mm. Comparisons of the three methods were carried out for phase velocity at the center frequency and the slope of the attenuation coefficient for the fast and slow waves. Good agreement among the three methods was also observed for average signal loss at the center frequency. The Bayesian and MLSP + CF approaches were able to separate the fast and slow waves and provide good estimates of the fast and slow wave properties even when the two wave modes overlapped in both time and frequency domains making conventional analysis methods unreliable.
  • Loading...
    Thumbnail Image
    Item
    Effect of the body wall on lithotripter shock waves
    (Mary Ann Liebert, Inc., 2014-04) Li, Guangyan; McAteer, James A.; Williams, James C Jr.; Berwick, Zachary C.; Department of Anatomy & Cell Biology, IU School of Medicine
    PURPOSE: Determine the influence of passage through the body wall on the properties of lithotripter shock waves (SWs) and the characteristics of the acoustic field of an electromagnetic lithotripter. METHODS: Full-thickness ex vivo segments of pig abdominal wall were secured against the acoustic window of a test tank coupled to the lithotripter. A fiber-optic probe hydrophone was used to measure SW pressures, determine shock rise time, and map the acoustic field in the focal plane. RESULTS: Peak positive pressure on axis was attenuated roughly proportional to tissue thickness-approximately 6% per cm. Irregularities in the tissue path affected the symmetry of SW focusing, shifting the maximum peak positive pressure laterally by as much as ∼2 mm. Within the time resolution of the hydrophone (7-15 ns), shock rise time was unchanged, measuring ∼17-21 ns with and without tissue present. Mapping of the field showed no effect of the body wall on focal width, regardless of thickness of the body wall. CONCLUSIONS: Passage through the body wall has minimal effect on the characteristics of lithotripter SWs. Other than reducing pulse amplitude and having the potential to affect the symmetry of the focused wave, the body wall has little influence on the acoustic field. These findings help to validate laboratory assessment of lithotripter acoustic field and suggest that the properties of SWs in the body are much the same as have been measured in vitro.
  • Loading...
    Thumbnail Image
    Item
    Ultrasonic propulsion of kidney stones: preliminary results of human feasibility study
    (Institute of Electrical and Electronics Engineers, 2014-09-03) Bailey, Michael; Cunitz, Bryan; Dunmire, Barbrina; Paun, Marla; Lee, Franklin; Ross, Susan; Lingeman, James; Coburn, Michael; Wessells, Hunter; Sorensen, Mathew; Harper, Jonathan; Department of Medicine, IU School of Medicine
    One in 11 Americans has experienced kidney stones, with a 50% average recurrence rate within 5-10 years. Ultrasonic propulsion (UP) offers a potential method to expel small stones or residual fragments before they become a recurrent problem. Reported here are preliminary findings from the first investigational use of UP in humans. The device uses a Verasonics ultrasound engine and Philips HDI C5-2 probe to generate real-time B-mode imaging and targeted "push" pulses on demand. There are three arms of the study: de novo stones, post-lithotripsy fragments, and the preoperative setting. A pain questionnaire is completed prior to and following the study. Movement is classified based on extent. Patients are followed for 90 days. Ten subjects have been treated to date: three de novo, five post-lithotripsy, and two preoperative. None of the subjects reported pain associated with the treatment or a treatment related adverse event, beyond the normal discomfort of passing a stone. At least one stone was moved in all subjects. Three of five post-lithotripsy subjects passed a single or multiple stones within 1-2 weeks following treatment; one subject passed two (1-2 mm) fragments before leaving clinic. In the pre-operative studies we successfully moved 7 - 8 mm stones. In four subjects, UP revealed multiple stone fragments where the clinical image and initial ultrasound examination indicated a single large stone.
  • Loading...
    Thumbnail Image
    Item
    Water Hammer Phenomenon in Coronary Arteries: Scientific Basis for Diagnostic and Predictive Modeling with Acoustic Action Mapping
    (MDPI, 2025-02-25) Ngo, Khiem D.; Nguyen, Thach; Pham, Huan Dat; Tran, Hadrian; Ha, Dat Q.; Dinh, Truong S.; Mihas, Imran; Kodenchery, Mihas; Gibson, C. Michael; Nguyen, Hien Q.; Nguyen, Thang; Loc, Vu T.; Nguyen, Chinh D.; Tien, Hoang Anh; Talarico, Ernest, Jr.; Zuin, Marco; Rigatelli, Gianluca; Nanjundappa, Aravinda; Nguyen, Quynh T. N.; Nguyen, The-Hung; Medicine, School of Medicine
    Background: In the study of coronary artery disease, the mechanisms underlying atherosclerosis initiation and progression or regression remain incompletely understood. Our research conceptualized the cardiovascular system as an integrated network of pumps and pipes, advocating for a paradigm shift from static imaging of coronary stenosis to dynamic assessments of coronary flow. Further review of fluid mechanics highlighted the water hammer phenomenon as a compelling analog for processes in coronary arteries. Methods: In this review, the analytical methodology employed a comprehensive, multifaceted approach that incorporated a review of fluid mechanics principles, in vitro acoustic experimentation, frame-by-frame visual angiographic assessments of in vivo coronary flow, and an artificial intelligence (AI) protocol designed to analyze the water hammer phenomenon within an acoustic framework. In the analysis of coronary flow, the angiograms were selected from patients with unstable angina if they had previously undergone one or more coronary angiograms, allowing for a longitudinal comparison of dynamic flow and phenomena. Results: The acoustic investigations pinpointed pockets of contrast concentrations, which might correspond to compression and rarefaction zones. Compression antinodes were correlated to severe stenosis, due to rapid shifts from low-pressure diastolic flow to high-pressure systolic surges, resulting in intimal injury. Rarefaction antinodes were correlated with milder lesions, due to de-escalating transitions from high systolic pressure to lower diastolic pressure. The areas of nodes remained without lesions. Based on the locations of antinodes and nodes, a coronary acoustic action map was constructed, enabling the identification of existing lesions, forecasting the progression of current lesions, and predicting the development of future lesions. Conclusions: The results suggested that intimal injury was likely induced by acoustic retrograde pressure waves from the water hammer phenomenon and developed new lesions at specifically exact locations.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University