ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Acetylcholinesterase"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Biochemical studies of the interaction of the acetylcholinesterase-acetylcholine and the monoamine oxidase-serotonin systems: I. The effect of 5-hydroxytryptamine metabolites
    (1963) Wiggs, James William
  • Loading...
    Thumbnail Image
    Item
    Purification and properties of mammalian brain acetylcholinesterase
    (1965) Jackson, Richard Lee
  • Loading...
    Thumbnail Image
    Item
    Regeneration of ventral roots into the dorsal horn and axoplasmic flow of acetylcholinesterase
    (1971) Ranish, Norman A.
  • Loading...
    Thumbnail Image
    Item
    Synthesis of the Alzheimer drug Posiphen into its primary metabolic products (+)-N1-norPosiphen, (+)-N8-norPosiphen and (+)-N1, N8-bisnorPosiphen, their inhibition of amyloid precursor protein, α-Synuclein synthesis, interleukin-1β release, and cholinergic action
    (Bentham Science Publishers, 2013) Yu, Qian-sheng; Reale, Marcella; Kamal, Mohammad A.; Holloway, Harold W.; Luo, Weiming; Sambamurti, Kumar; Ray, Balmiki; Lahiri, Debomoy K.; Rogers, Jack T.; Greig, Nigel H.; Department of Psychiatry, IU School of Medicine
    A major pathological hallmark of Alzheimer disease (AD) is the appearance in the brain of senile plaques that are primarily composed of aggregated forms of β-amyloid peptide (Aβ) that derive from amyloid precursor protein (APP). Posiphen (1) tartrate is an experimental AD drug in current clinical trials that reduces Aβ levels by lowering the rate of APP synthesis without toxicity. To support the clinical development of Posiphen (1) and elucidate its efficacy, its three major metabolic products, (+)-N1-norPosiphen (15), (+)-N8-norPosiphen (17) and (+)-N1, N8-bisnorPosiphen (11), were required in high chemical and optical purity. The efficient transformation of Posiphen (1) into these metabolic products, 15, 17 and 11, is described. The biological activity of these metabolites together with Posiphen (1) and its enantiomer, the AD drug candidate (-)-phenserine (2), was assessed against APP,α-synuclein and classical cholinergic targets. All the compounds potently inhibited the generation of APP and α-synuclein in neuronal cultures. In contrast, metabolites 11 and 15, and (-)-phenserine (2) but not Posiphen (1) or 17, possessed acetyl cholinesterase inhibitory action and no compounds bound either nicotinic or muscarinic receptors. As Posiphen (1) lowered CSF markers of inflammation in a recent clinical trial, the actions of 1 and 2 on proinflammatory cytokine interleukin (IL)-1β release human peripheral blood mononuclear cells was evaluated, and found to be potently inhibited by both agents.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University