ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Acetolactate Synthase"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Structural and Kinetic Comparison of Acetolactate Synthase and Acetohydroxyacid Synthase from Klebsiella pneumoniae
    (2019-08) Latta, Alexander J.; McLeish, Michael; Li, Lei; Mesecar, Andrew; Laulhe, Sebastien
    Acetolactate synthase (ALS) and acetohydroxyacid synthase (AHAS) are two thiamin diphosphate (ThDP)-dependent enzymes that catalyze the formation of acetolactate from two molecules of pyruvate. In addition to acetolactate, AHAS can catalyze the formation of acetohydroxybutyrate from pyruvate and α-ketobutyrate. When formed by AHAS, these compounds are important precursors to the essential amino acids valine and isoleucine. Conversely, ALS forms acetolactate as a precursor to 2,3-butanediol, a product formed in an alternative pathway to mixed acid fermentation. While these enzymes catalyze the same reaction, they have been found to be quite different. Such differences include: biological function, pH optimum, cofactor requirements, reaction kinetics and quaternary structure. Importantly, AHAS has been identified as the target of the widely-used sulfonylurea and imidazolinone herbicides, which has led to many structural and kinetic studies on AHAS enzymes from plants, bacteria, and fungi. ALS, on the other hand, has only been identified in bacteria, and has largely not seen such extensive characterization. Finally, although some bacteria contain both enzymes, they have never been studied in detail from the same organism. Here, the ALS and AHAS enzymes from Klebsiella pneumoniae were studied using steady-state kinetic analyses, X-ray crystallography, site-directed and site-saturation mutagenesis, and cell growth complementation assays to i) compare the kinetic parameters of each enzyme, ii) compare the active sites to probe their differences in substrate profile and iii) test the ability of ALS to function in place of AHAS in vivo.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University