- Browse by Subject
Browsing by Subject "Acetaminophen"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item A computational model of liver tissue damage and repair(Public Library of Science, 2020-12-21) Adhyapok, Priyom; Fu, Xiao; Sluka, James P.; Clendenon, Sherry G.; Sluka, Victoria D.; Wang, Zemin; Dunn, Kenneth; Klaunig, James E.; Glazier, James A.; Medicine, School of MedicineDrug induced liver injury (DILI) and cell death can result from oxidative stress in hepatocytes. An initial pattern of centrilobular damage in the APAP model of DILI is amplified by communication from stressed cells and immune system activation. While hepatocyte proliferation counters cell loss, high doses are still lethal to the tissue. To understand the progression of disease from the initial damage to tissue recovery or death, we computationally model the competing biological processes of hepatocyte proliferation, necrosis and injury propagation. We parametrize timescales of proliferation (α), conversion of healthy to stressed cells (β) and further sensitization of stressed cells towards necrotic pathways (γ) and model them on a Cellular Automaton (CA) based grid of lattice sites. 1D simulations show that a small α/β (fast proliferation), combined with a large γ/β (slow death) have the lowest probabilities of tissue survival. At large α/β, tissue fate can be described by a critical γ/β* ratio alone; this value is dependent on the initial amount of damage and proportional to the tissue size N. Additionally, the 1D model predicts a minimum healthy population size below which damage is irreversible. Finally, we compare 1D and 2D phase spaces and discuss outcomes of bistability where either survival or death is possible, and of coexistence where simulated tissue never completely recovers or dies but persists as a mixture of healthy, stressed and necrotic cells. In conclusion, our model sheds light on the evolution of tissue damage or recovery and predicts potential for divergent fates given different rates of proliferation, necrosis, and injury propagation.Item Acetaminophen-induced hepatic necrosis: possible biochemical mechanisms(1973) Potter, William ZeiglerItem Evaluation of Dosing Strategies of N-acetylcysteine for Acetaminophen Toxicity in Patients Greater than 100 Kilograms: Should the Dosage Cap Be Used?(Springer, 2021) Baum, Regan A.; Woolum, Jordan A.; Bailey, Abby M.; Howell, Molly M.; Weant, Kyle A.; Geraghty, LeeAnn; Mohan, Sanjay; Webb, Ashley N.; Su, Mark K.; Akpunonu, Peter; Medicine, School of MedicineIntroduction: Acetaminophen is a commonly used analgesic and antipyretic, with the potential to cause significant injury when ingested in toxic amounts. Although the antidote n-acetylcysteine (NAC) is available, evidence supporting dose recommendations for patients weighing over 100 kg are lacking. We performed a retrospective, multi-center analysis to determine if a capped NAC dosing scheme is similar to a non-capped dosing scheme in patients weighing over 100 kg. Methods: Between January 2009 and January 2016, we identified patients presenting to 12 different centers who were evaluated for acetaminophen poisoning treatment. Patients must have weighed greater than 100 kg and were evaluated and identified as needing treatment for acetaminophen-related poisoning with NAC. The primary outcome was occurrence of hepatic injury, defined as an AST or ALT ≥ 100 IU/L. Secondary endpoints included number of drug-related adverse events, occurrence of hepatotoxicity, cumulative NAC dose, regimen cost, length of hospital and intensive care unit stays, and in-hospital mortality. Results: There were 83 patients identified as meeting the pre-specified inclusion and exclusion criteria. A capped NAC dosing scheme resulted in no difference in hepatic injury when compared to a non-capped regimen (49.4% vs 50%, p = 1.000). The capped dosage regimen was associated with a lower cumulative dose (285.2 mg/kg vs 304.6 mg/kg, p < 0.001) and cost. No other statistically significant differences were identified among the secondary endpoints. Conclusion: A capped NAC dosing scheme was not associated with higher rates of hepatic injury or hepatotoxicity in obese patients in the setting of acetaminophen poisoning when compared to a non-capped regimen. Further research is needed to verify these results.Item Massive acetaminophen ingestion managed successfully with N-acetylcysteine, fomepizole, and renal replacement therapy(Dustri-Verlag, 2024-03-02) Williams, Elizabeth E.; Quach, Duc; Daigh, Arthur; Graduate Medical Education, School of MedicineAcetaminophen ingestion is routinely managed with the antidote, N-acetylcysteine (NAC). Massive acetaminophen poisoning has been treated successfully with adjunctive therapies such as fomepizole and hemodialysis. Fomepizole functions by inhibiting cytochrome p560, which prevents tylenol from forming its toxic metabolite, NAPQI. Prior cases have demonstrated favorable outcomes and a significant drop in acetaminophen levels after a single session of intermittent hemodialysis and continuous veno-venous hemofiltration (CVVH). However, the recommended dosage adjustments of NAC and fomepizole while a patient is undergoing CVVH has not been well reported. We present a case of an 18-year-old male who presented after ingesting 125 g of tylenol. His 4-hour acetaminophen level was 738.6 µg/mL. He was treated with NAC, fomepizole, and a single 4-hour session of hemodialysis. His acetaminophen level remained elevated at 730 µg/mL despite the hemodialysis session. CVVH was initiated, and he was given intravenous NAC at 12.5 mg/kg/h, oral NAC at 70 mg/kg every 4 hours, and intravenous fomepizole at 10 mg/kg every 6 hours. His tylenol levels became undetectable 57 hours after ingestion, and he did not develop permanent liver toxicity. This case encourages the use of CVVH for massive tylenol ingestion when a single run of intermittent hemodialysis is not effective in lowering the tylenol level. NAC, fomepizole, and CVVH can prevent unfavorable outcomes in massive acetaminophen ingestion when provided at an appropriate dose and frequency.