- Browse by Subject
Browsing by Subject "APOE ε4"
Now showing 1 - 6 of 6
Results Per Page
Sort Options
Item APOE ε2 resilience for Alzheimer's disease is mediated by plasma lipid species: Analysis of three independent cohort studies(Wiley, 2022) Wang, Tingting; Huynh, Kevin; Giles, Corey; Mellett, Natalie A.; Duong, Thy; Nguyen, Anh; Lim, Wei Ling Florence; Smith, Alex At; Olshansky, Gavriel; Cadby, Gemma; Hung, Joseph; Hui, Jennie; Beilby, John; Watts, Gerald F.; Chatterjee, Pratishtha; Martins, Ian; Laws, Simon M.; Bush, Ashley I.; Rowe, Christopher C.; Villemagne, Victor L.; Ames, David; Masters, Colin L.; Taddei, Kevin; Doré, Vincent; Fripp, Jürgen; Arnold, Matthias; Kastenmüller, Gabi; Nho, Kwangsik; Saykin, Andrew J.; Baillie, Rebecca; Han, Xianlin; Martins, Ralph N.; Moses, Eric K.; Kaddurah-Daouk, Rima; Meikle, Peter J.; Radiology and Imaging Sciences, School of MedicineIntroduction: The apolipoprotein E (APOE) genotype is the strongest genetic risk factor for late-onset Alzheimer's disease. However, its effect on lipid metabolic pathways, and their mediating effect on disease risk, is poorly understood. Methods: We performed lipidomic analysis on three independent cohorts (the Australian Imaging, Biomarkers and Lifestyle [AIBL] flagship study, n = 1087; the Alzheimer's Disease Neuroimaging Initiative [ADNI] 1 study, n = 819; and the Busselton Health Study [BHS], n = 4384), and we defined associations between APOE ε2 and ε4 and 569 plasma/serum lipid species. Mediation analysis defined the proportion of the treatment effect of the APOE genotype mediated by plasma/serum lipid species. Results: A total of 237 and 104 lipid species were associated with APOE ε2 and ε4, respectively. Of these 68 (ε2) and 24 (ε4) were associated with prevalent Alzheimer's disease. Individual lipid species or lipidomic models of APOE genotypes mediated up to 30% and 10% of APOE ε2 and ε4 treatment effect, respectively. Discussion: Plasma lipid species mediate the treatment effect of APOE genotypes on Alzheimer's disease and as such represent a potential therapeutic target.Item APOE ε4 and the risk for Alzheimer disease and cognitive decline in African Americans and Yoruba(Cambridge University Press, 2014-06) Hendrie, Hugh C.; Murrell, Jill; Baiyewu, Olusegun; Lane, Kathleen A.; Purnell, Christianna; Ogunniyi, Adesola; Unverzagt, Frederick W.; Hall, Kathleen; Callahan, Christopher M.; Saykin, Andrew J.; Gureje, Oye; Hake, Ann; Foroud, Tatiana; Gao, Sujuan; Department of Psychiatry, IU School of MedicineBackground There is little information on the association of the APOEe4 allele and AD risk in African populations. In previous analyses from the Indianapolis-Ibadan dementia project, we have reported that APOE ε4 increased the risk for Alzheimer’s disease (AD) in African Americans but not in Yoruba. This study represents a replication of this earlier work using enriched cohorts and extending the analysis to include cognitive decline. Methods In this longitudinal study of two community dwelling cohorts of elderly Yoruba and African Americans, APOE genotyping was conducted from blood samples taken on or before 2001 (1,871 African Americans & 2,200 Yoruba). Mean follow up time was 8.5 years for African Americans and 8.8 years for Yoruba. The effects of heterozygosity or homozygosity of ε4 and of the possession of e4 on time to incident AD and on cognitive decline were determined using Cox’s proportional hazards regression and mixed effects models. Results After adjusting for covariates, one or two copies of the APOE ε4 allele were significant risk factors for incident AD (p < 0.0001) and cognitive decline in the African-American population (p < 0001). In the Yoruba, only homozygosity for APOE ε4 was a significant risk factor for AD (p = 0.0002) but not for cognitive decline (p = 0.2346), however, possession of an e4 allele was significant for both incident AD (p = 0.0489) and cognitive decline (p = 0.0425). Conclusions In this large longitudinal comparative study, APOE ε4 had a significant, but weaker, effect on incident AD and on cognitive decline in Yoruba than in African Americans. The reasons for these differences remain unclear.Item APOE ε4 carrier status and sex differentiate rates of cognitive decline in early- and late-onset Alzheimer's disease(Wiley, 2023) Polsinelli, Angelina J.; Logan, Paige E.; Lane, Kathleen A.; Manchella, Mohit K.; Nemes, Sára; Sanjay, Apoorva Bharthur; Gao, Sujuan; Apostolova, Liana G.; Neurology, School of MedicineBackground: We studied the effect of apolipoprotein E (APOE) ε4 status and sex on rates of cognitive decline in early- (EO) and late- (LO) onset Alzheimer's disease (AD). Method: We ran mixed-effects models with longitudinal cognitive measures as dependent variables, and sex, APOE ε4 carrier status, and interaction terms as predictor variables in 998 EOAD and 2562 LOAD participants from the National Alzheimer's Coordinating Center. Results: APOE ε4 carriers showed accelerated cognitive decline relative to non-carriers in both EOAD and LOAD, although the patterns of specific cognitive domains that were affected differed. Female participants showed accelerated cognitive decline relative to male participants in EOAD only. The effect of APOE ε4 was greater in EOAD for executive functioning (p < 0.0001) and greater in LOAD for language (p < 0.0001). Conclusion: We found APOE ε4 effects on cognitive decline in both EOAD and LOAD and female sex in EOAD only. The specific patterns and magnitude of decline are distinct between the two disease variants. Highlights: Apolipoprotein E (APOE) ε4 carrier status and sex differentiate rates of cognitive decline in early-onset (EO) and late-onset (LO) Alzheimer's disease (AD). APOE ε4 in EOAD accelerated decline in memory, executive, and processing speed domains. Female sex in EOAD accelerated decline in language, memory, and global cognition. The effect of APOE ε4 was stronger for language in LOAD and for executive function in EOAD. Sex effects on language and executive function decline differed between EOAD and LOAD.Item Association of liver function markers and apolipoprotein E ε4 with pathogenesis and cognitive decline in Alzheimer's disease(Frontiers Media, 2024-07-24) Han, Sang-Won; Lee, Sang-Hwa; Kim, Jong Ho; Lee, Jae-Jun; Park, Young Ho; Kim, SangYun; Nho, Kwangsik; Sohn, Jong-Hee; Radiology and Imaging Sciences, School of MedicineBackground: Alzheimer's disease (AD) is a complex neurodegenerative disorder influenced by various factors, including liver function, which may impact the clearance of amyloid-β (Aβ) in the brain. This study aimed to explore how the apolipoprotein E (APOE) ε4 allele affects the relationship of liver function markers with AD pathology and cognition. Methods: We analyzed data from two independent cohorts, including 732 participants from the Hallym University Medical Center and 483 from the Alzheimer's Disease Neuroimaging Initiative, each group consisting of individuals with and without the APOE ε4 allele. Cross-sectional analyses evaluated the associations of liver enzymes (aspartate aminotransferase [AST], alanine aminotransferase [ALT], alkaline phosphatase, total bilirubin, and albumin) with AD diagnosis, amyloid positron emission tomography (PET) burden, and cerebrospinal fluid biomarkers for AD (Aβ42, total tau, and phosphorylated tau181) at baseline. Longitudinally, we investigated the associations between these liver enzymes and changes in cognitive performance over the course of a year. Logistic and linear regression models were used to analyze these associations and mediation analyses were conducted to assess whether age and amyloid PET burden mediated these associations. Results: Only in the APOE ε4 carrier group, a high AST to ALT ratio and low ALT levels were significantly associated with AD diagnosis, increased amyloid PET burden, and faster longitudinal decline in cognitive function in both cohorts. In particular, the AST to ALT ratio was associated with cerebrospinal fluid Aβ42 levels exclusively in the APOE ε4 carrier group in the Alzheimer's Disease Neuroimaging Initiative cohort but not with phosphorylated tau181 or total tau levels. Moreover, mediation analyses from both cohorts revealed that in the APOE ε4 carriers group, age did not mediate the associations between liver enzymes and AD diagnosis or amyloid PET burden. However, amyloid PET burden partially mediated the association between liver enzymes and AD diagnosis exclusively in the APOE ε4 carriers group. Conclusion: This study provides valuable insights into the significant association of the APOE ε4 allele with liver enzymes and their potential role in Aβ-related pathogenesis and cognition in AD. Further research is required to elucidate the underlying mechanisms and potential therapeutic implications of these findings.Item Predictability of polygenic risk score for progression to dementia and its interaction with APOE ε4 in mild cognitive impairment(BMC, 2021-08-31) Pyun, Jung‑Min; Park, Young Ho; Lee, Keon‑Joo; Kim, SangYun; Saykin, Andrew J.; Nho, Kwangsik; Radiology and Imaging Sciences, School of MedicineBackground: The combinatorial effect of multiple genetic factors calculated as a polygenic risk score (PRS) has been studied to predict disease progression to Alzheimer's disease (AD) from mild cognitive impairment (MCI). Previous studies have investigated the performance of PRS in the prediction of disease progression to AD by including and excluding single nucleotide polymorphisms within the region surrounding the APOE gene. These studies may have missed the APOE genotype-specific predictability of PRS for disease progression to AD. Methods: We analyzed 732 MCI from the Alzheimer's Disease Neuroimaging Initiative cohort, including those who progressed to AD within 5 years post-baseline (n = 270) and remained stable as MCI (n = 462). The predictability of PRS including and excluding the APOE region (PRS+APOE and PRS-APOE) on the conversion to AD and its interaction with the APOE ε4 carrier status were assessed using Cox regression analyses. Results: PRS+APOE (hazard ratio [HR] 1.468, 95% CI 1.335-1.615) and PRS-APOE (HR 1.293, 95% CI 1.157-1.445) were both associated with a significantly increased risk of MCI progression to dementia. The interaction between PRS+APOE and APOE ε4 carrier status was significant with a P-value of 0.0378. The association of PRSs with the progression risk was stronger in APOE ε4 non-carriers (PRS+APOE: HR 1.710, 95% CI 1.244-2.351; PRS-APOE: HR 1.429, 95% CI 1.182-1.728) than in APOE ε4 carriers (PRS+APOE: HR 1.167, 95% CI 1.005-1.355; PRS-APOE: HR 1.172, 95% CI 1.020-1.346). Conclusions: PRS could predict the conversion of MCI to dementia with a stronger association in APOE ε4 non-carriers than APOE ε4 carriers. This indicates PRS as a potential genetic predictor particularly for MCI with no APOE ε4 alleles.Item Relationship between a novel learning slope metric and Alzheimer’s disease biomarkers(Taylor & Francis, 2022) Hammers, Dustin B.; Suhrie, Kayla; Dixon, Ava; Gradwohl, Brian D.; Archibald, Zane G.; King, Jace B.; Spencer, Robert J.; Duff, Kevin; Hoffman, John M.; Neurology, School of MedicineThe Learning Ratio (LR) is a novel learning score examining the proportion of information learned over successive learning trials relative to information available to be learned. Validation is warranted to understand LR's sensitivity to Alzheimer's disease (AD) pathology. One-hundred twenty-three participants across the AD continuum underwent memory assessment, quantitative brain imaging, and genetic analysis. LR scores were calculated from the HVLT-R, BVMT-R, RBANS List Learning, and RBANS Story Memory, and compared to total hippocampal volumes,18F-Flutemetamol composite SUVR uptake, and APOE ε4 status. Lower LR scores were consistently associated with smaller total hippocampal volumes, greater cerebral β-amyloid deposition, and APOE ε4 positivity. This LR score outperformed a traditional learning slope calculation in all analyses. LR is sensitive to AD pathology along the AD continuum - more so than a traditional raw learning score - and reducing the competition between the first trial and subsequent trials can better depict learning capacity.