ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "AML"

Now showing 1 - 9 of 9
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A Mechanistic Approach to Identify Novel Therapeutic Drugs for Targeting FA-Disrupted Malignancies
    (2023-07) Sheth, Aditya Sukumar; Clapp, D. Wade; Vance, Gail; Angus, Steve; Herbert, Brittney-Shea
    The Fanconi anemia (FA) signaling network plays a critical role in maintaining genomic integrity during interphase and mitosis. Biallelic germline mutation of any of the 22 genes that constitute this pathway (FANCA-FANCW) results in Fanconi Anemia, a cancer predisposition syndrome characterized by congenital malformations, bone marrow failure, and pediatric acute myeloid leukemias (AMLs). Among the general population, acquired genetic disruptions of the FA pathway are found in 30% of all sporadic cancers and over 15% of sporadic pediatric AMLs underscoring the importance of this pathway in the prevention of malignant transformation. Therefore, the identification of precision therapies for FA-deficient AML is a critical need. The canonical tumor suppressive role of FA proteins in the repair of DNA damage during interphase is well established. We and others have uncovered the roles of FA proteins in mitotic regulation, suggesting additional mechanisms by which the FA pathway prevents genomic instability. Mutation of FANCA is the most common cause of FA and is one of the most frequently disrupted FA pathway genes in sporadic AML. To identify synthetic lethal targets of FANCA, we previously identified mitotic phospho-signaling pathways required for the survival of FANCA-/- patient-derived fibroblasts through a kinome-wide shRNA screen. We identified mitotic kinases CHEK1, PLK1, SLK, and TTK as potential targets, which suggests a mitosis-specific vulnerability of FA-deficient cells. These findings corroborate work by others who have identified synthetic lethal interactions between PLK1 and the FA pathway members, FANCG and BRCA1, suggesting that inactivation of the FA pathway may sensitize cancers to PLK1 inhibition. A more thorough understanding of FA pathway function in mitosis provides new insight into AML pathogenesis and suggests that genetic disruptions of the FA pathway may be predictive of sensitivity to PLK1 inhibition, providing a preclinical rationale for the development of precision therapies.
  • Loading...
    Thumbnail Image
    Item
    Automated Assessment of Disease Progression in Acute Myeloid Leukemia by Probabilistic Analysis of Flow Cytometry Data
    (Institute of Electrical and Electronics Engineers, 2017-05) Rajwa, Bartek; Wallace, Paul K.; Griffiths, Elizabeth A.; Dundar, Murat; Computer and Information Science, School of Science
    OBJECTIVE: Flow cytometry (FC) is a widely acknowledged technology in diagnosis of acute myeloid leukemia (AML) and has been indispensable in determining progression of the disease. Although FC plays a key role as a posttherapy prognosticator and evaluator of therapeutic efficacy, the manual analysis of cytometry data is a barrier to optimization of reproducibility and objectivity. This study investigates the utility of our recently introduced nonparametric Bayesian framework in accurately predicting the direction of change in disease progression in AML patients using FC data. METHODS: The highly flexible nonparametric Bayesian model based on the infinite mixture of infinite Gaussian mixtures is used for jointly modeling data from multiple FC samples to automatically identify functionally distinct cell populations and their local realizations. Phenotype vectors are obtained by characterizing each sample by the proportions of recovered cell populations, which are, in turn, used to predict the direction of change in disease progression for each patient. RESULTS: We used 200 diseased and nondiseased immunophenotypic panels for training and tested the system with 36 additional AML cases collected at multiple time points. The proposed framework identified the change in direction of disease progression with accuracies of 90% (nine out of ten) for relapsing cases and 100% (26 out of 26) for the remaining cases. CONCLUSIONS: We believe that these promising results are an important first step toward the development of automated predictive systems for disease monitoring and continuous response evaluation. SIGNIFICANCE: Automated measurement and monitoring of therapeutic response is critical not only for objective evaluation of disease status prognosis but also for timely assessment of treatment strategies.
  • Loading...
    Thumbnail Image
    Item
    Consecutive epigenetically-active agent combinations act in ID1-RUNX3-TET2 and HOXA pathways for Flt3ITD+ve AML
    (Impact Journals, 2017-12-25) Sayar, Hamid; Liu, Yan; Gao, Rui; Zaid, Mohammad Abu; Cripe, Larry D.; Weisenbach, Jill; Sargent, Katie J.; Nassiri, Mehdi; Li, Lang; Konig, Heiko; Suvannasankha, Attaya; Pan, Feng; Shanmugam, Rajasubramaniam; Goswami, Chirayu; Kapur, Reuben; Xu, Mingjiang; Boswell, H. Scott; Medicine, School of Medicine
    Co-occurrence of Flt3ITD and TET2 mutations provoke an animal model of AML by epigenetic repression of Wnt pathway antagonists, including RUNX3, and by hyperexpression of ID1, encoding Wnt agonist. These affect HOXA over-expression and treatment resistance. A comparable epigenetic phenotype was identified among adult AML patients needing novel intervention. We chose combinations of targeted agents acting on distinct effectors, at the levels of both signal transduction and chromatin remodeling, in relapsed/refractory AML's, including Flt3ITD+ve, described with a signature of repressed tumor suppressor genes, involving Wnt antagonist RUNX3, occurring along with ID1 and HOXA over-expressions. We tracked patient response to combination of Flt3/Raf inhibitor, Sorafenib, and Vorinostat, pan-histone deacetylase inhibitor, without or with added Bortezomib, in consecutive phase I trials. A striking association of rapid objective remissions (near-complete, complete responses) was noted to accompany induced early pharmacodynamic changes within patient blasts in situ, involving these effectors, significantly linking RUNX3/Wnt antagonist de-repression (80%) and ID1 downregulation (85%), to a response, also preceded by profound HOXA9 repression. Response occurred in context of concurrent TET2 mutation/hypomorphy and Flt3ITD+ve mutation (83% of complete responses). Addition of Bortezomib to the combination was vital to attainment of complete response in Flt3ITD+ve cases exhibiting such Wnt pathway dysregulation.
  • Loading...
    Thumbnail Image
    Item
    Deregulation of the HOXA9/MEIS1 Axis in Acute Leukemia
    (Wolters Kluwer, 2016-07) Collins, Cailin T.; Hess, Jay L.; Office of Dean, School of Medicine
    Purpose of review HOXA9 is a homeodomain transcription factor that plays an essential role in normal hematopoiesis and acute leukemia, where its over expression is strongly correlated with poor prognosis. This review highlights recent advances in the understanding of genetic alterations leading to deregulation of HOXA9 and the downstream mechanisms of HOXA9-mediated transformation. Recent findings A variety of genetic alterations including MLL-translocations, NUP98-fusions, NPM1 mutations, CDX deregulation, and MOZ-fusions lead to high level HOXA9 expression in acute leukemias. The mechanisms resulting in HOXA9 over expression are beginning to be defined and represent attractive therapeutic targets. Small molecules targeting MLL-fusion protein complex members, such as DOT1L and menin, have shown promising results in animal models, and a DOT1L inhibitor is currently being tested in clinical trials. Essential HOXA9 cofactors and collaborators are also being identified, including transcription factors PU.1 and C/EBPα, which are required for HOXA9-driven leukemia. HOXA9 targets including IGF1, CDX4, INK4A/INK4B/ARF, mir-21 and mir-196b and many others provide another avenue for potential drug development. Summary HOXA9 deregulation underlies a large subset of aggressive acute leukemias. Understanding the mechanisms regulating the expression and activity of HOXA9, along with its critical downstream targets, shows promise for the development of more selective and effective leukemia therapies.
  • Loading...
    Thumbnail Image
    Item
    Driver Mutations in Leukemia Promote Disease Pathogenesis through a Combination of Cell-Autonomous and Niche Modulation
    (Elsevier, 2020-07-14) Ramdas, Baskar; Mali, Raghuveer Singh; Palam, Lakshmi Reddy; Pandey, Ruchi; Cai, Zhigang; Pasupuleti, Santhosh Kumar; Burns, Sarah S.; Kapur, Reuben; Pediatrics, School of Medicine
    Studies of patients with acute myeloid leukemia (AML) have led to the identification of mutations that affect different cellular pathways. Some of these have been classified as preleukemic, and a stepwise evolution program whereby cells acquire additional mutations has been proposed in the development of AML. How the timing of acquisition of these mutations and their impact on transformation and the bone marrow (BM) microenvironment occurs has only recently begun to be investigated. We show that constitutive and early loss of the epigenetic regulator, TET2, when combined with constitutive activation of FLT3, results in transformation of chronic myelomonocytic leukemia-like or myeloproliferative neoplasm-like phenotype to AML, which is more pronounced in double-mutant mice relative to mice carrying mutations in single genes. Furthermore, we show that in preleukemic and leukemic mice there are alterations in the BM niche and secreted cytokines, which creates a permissive environment for the growth of mutation-bearing cells relative to normal cells.
  • Loading...
    Thumbnail Image
    Item
    Mechanism of Transformation and Therapeutic Targets for Hematological Neoplasms Harboring Oncogenic KIT Mutation
    (2014) Martin, Holly René; Kapur, Reuben; Chan, Rebecca J.; Herbert, Brittney-Shea; Pollok, Karen E.
    Gain-of-function mutations in the KIT receptor tyrosine kinase have been associated with highly malignant human neoplasms. In particular, an acquired somatic mutation at codon 816 in the second catalytic domain of KIT involving an aspartic acid to valine substitution is found in patients with systemic mastocytosis (SM) and acute myeloid leukemia (AML). The presence of this mutation in SM and AML is associated with poor prognosis and overall survival. This mutation changes the conformation of the KIT receptor resulting in altered substrate recognition and constitutive tyrosine autophosphorylation leading to constitutive ligand independent growth. As there are currently no efficacious therapeutic agents against this mutation, this study sought to define novel therapeutic targets that contribute to aberrant signaling downstream from KITD816V that promote transformation of primary hematopoietic stem/progenitor cells in diseases such as AML and SM. This study shows that oncogenic KITD814V (murine homolog) induced myeloproliferative neoplasms (MPN) occurs in the absence of ligand stimulation, and that intracellular tyrosines are important for KITD814V-induced MPN. Among the seven intracellular tyrosines examined, tyrosine 719 alone has a unique role in regulating KITD814V-induced proliferation and survival. Residue tyrosine 719 is vital for activation of the regulatory subunit of phosphatidylinositol 3-kinase (PI3K), p85α, downstream from KITD814V. Downstream effectors of the PI3K signaling pathway, in of leukemic cells bearing KITD814V with an allosteric inhibitor of Pak or its genetic inactivation results in growth repression due to enhanced apoptosis. To assess the role of Rac GEFs in KITD814V induced transformation, EHop-016, an inhibitor of Rac, was used to specifically target Vav1, and found to be a potent inhibitor of human and murine leukemic cell growth. In vivo, the inhibition of Vav or Rac or Pak delayed the onset of MPN and rescued the associated pathology in mice. These studies provide insight on mechanisms and potential novel therapeutic targets for hematological malignancies harboring an oncogenic KIT mutation.
  • Loading...
    Thumbnail Image
    Item
    The protein tyrosine phosphate, SHP2, functions in multiple cellular compartments in FLT3-ITD+ Leukemia
    (2016-03-09) Richine, Briana Marie; Chan, Rebecca, J.; Carlesso, Nadia; Pollok, Karen E.; White, Kenneth E.
    FMS-like tyrosine receptor kinase-internal tandem duplications (FLT3-ITDs) are the most frequent deleterious mutations found in acute myeloid leukemia (AML) and portend a poor prognosis. Currently, AML patients typically achieve disease remission, yet undergo high rates of disease relapse, implying a residual post-treatment reservoir of resistant malignancy-initiating cells. This begs for new therapeutic approaches to be discovered, and suggests that targeting multiple cellular compartments is needed for improved therapeutic approaches. We have shown that the protein tyrosine phosphatase, Shp2, associates physically FLT3-ITD at tyrosine 599 (Y599) and positively regulates aberrant STAT5 activation and leukemogenesis. We also demonstrated that genetic disruption of Ptpn11, the gene encoding Shp2, increased malignancy specific survival of animals transplanted with FLT3-ITD-transduced cells, suggesting that Shp2 may regulate the function of the malignancy-initiating cell. Taken together, I hypothesized that inhibiting Shp2 can target both FLT3-ITD+ AML tumor cells as well as FLT3-ITD-expressing hematopoietic stem cells. To study this hypothesis, I employed two validation models including genetic inhibition of Shp2 interaction with FLT3-ITD in 32D cells or genetic disruption of Shp2 in FLT3-ITD-expressing HSCs. Using FLT3-ITD-expressing 32D cells as an AML tumor model, I found that mutating the Shp2 binding site on FLT3-ITD (Y599) reduced proliferation in vitro and increased latency to leukemia onset in vivo. Further, pharmacologic inhibition of Shp2 preferentially reduced proliferation of FLT3-ITD+ primary AML samples compared to FLT3-ITD- samples, and cooperated with inhibition of the lipid kinase, phospho-inositol-3-kinase (PI3K), and of the tyrosine kinase, Syk, to reduce proliferation of both FLT3-ITD+ and FLT3-ITD- AML samples. To evaluate the stem cell compartment, I crossed a murine locus-specific knock-in of FLT3-ITD with Shp2flox/flox; Mx1-Cre mice to generate FLT3-ITD; Shp2+/- mice and found that Shp2 heterozygosity dramatically inhibits hematopoietic stem cell engraftment in competitive transplant assays. Further, I found that lineage negative cells from FLT3-ITD; Shp2+/- mice demonstrated increased senescence compared to control mice, suggesting that Shp2 may regulate senescence in FLT3-ITD-expressing hematopoietic stem cells. Together, these findings indicate a cooperative relationship between the tyrosine phosphatase, Shp2, and the kinases PI3K and Syk in AML tumor cells, and indicate that Shp2 plays a positive role in the stem cell compartment to promote stem cell function of the malignancy-initiating cell in AML. Therefore, targeting Shp2 may hold therapeutic benefit for patients with FLT3-ITD+ AML.
  • Loading...
    Thumbnail Image
    Item
    Rapid development of myeloproliferative neoplasm in mice with Ptpn11D61Y mutation and haploinsufficient for Dnmt3a
    (Impact Journals, 2017-12-26) Deng, Lisa; Richine, Briana M.; Virts, Elizabeth L.; Jideonwo-Auman, Victoria N.; Chan, Rebecca J.; Kapur, Reuben; Pediatrics, School of Medicine
    PTPN11 gain-of-function mutation is the most common mutation found in patients with juvenile myelomonocytic leukemia and DNMT3A loss occurs in over 20% of acute myeloid leukemia patients. We studied the combined effect of both Ptpn11 gain-of-function mutation (D61Y) and Dnmt3a haploinsufficiency on mouse hematopoiesis, the presence of which has been described in both juvenile myelomonocytic leukemia and acute myeloid leukemia patients. Double mutant mice rapidly become moribund relative to any of the other genotypes, which is associated with enlargement of the spleen and an increase in white blood cell counts. An increase in the mature myeloid cell compartment as reflected by the presence of Gr1+Mac1+ cells was also observed in double mutant mice relative to any other group. Consistent with these observations, a significant increase in the absolute number of granulocyte macrophage progenitors (GMPs) was seen in double mutant mice. A decrease in the lymphoid compartment including both T and B cells was noted in the double mutant mice. Another significant difference was the presence of extramedullary erythropoiesis with increased erythroid progenitors in the spleens of Dnmt3a+/-;D61Y mice relative to other groups. Taken together, our results suggest that the combined haploinsufficiency of Dnmt3a and presence of an activated Shp2 changes the composition of multiple hematopoietic lineages in mice relative to the individual heterozygosity of these genes.
  • Loading...
    Thumbnail Image
    Item
    Therapies for acute myeloid leukemia: vosaroxin
    (DovePress, 2017-08-07) Sayar, Hamid; Bashardoust, Parvaneh; Medicine, School of Medicine
    Vosaroxin, a quinolone-derivative chemotherapeutic agent, was considered a promising drug for the treatment of acute myeloid leukemia (AML). Early-stage clinical trials with this agent led to a large randomized double-blind placebo-controlled study of vosaroxin in combination with intermediate-dose cytarabine for the treatment of relapsed or refractory AML. The study demonstrated better complete remission rates with vosaroxin, but there was no statistically significant overall survival benefit in the whole cohort. A subset analysis censoring patients who had undergone allogeneic stem cell transplantation, however, revealed a modest but statistically significant improvement in overall survival particularly among older patients. This article reviews the data available on vosaroxin including clinical trials in AML and offers an analysis of findings of these studies as well as the current status of vosaroxin.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University