- Browse by Subject
Browsing by Subject "ALDH"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item ALDH1 Bio-activates Nifuroxazide to Eradicate ALDHHigh Melanoma-Initiating Cells(Elsevier, 2018-12-20) Sarvi, Sana; Crispin, Richard; Lu, Yuting; Zeng, Lifan; Hurley, Thomas D.; Houston, Douglas R.; von Kriegsheim, Alex; Chen, Che-Hong; Mochly-Rosen, Daria; Ranzani, Marco; Mathers, Marie E.; Xu, Xiaowei; Xu, Wei; Adams, David J.; Carragher, Neil O.; Fujita, Mayumi; Schuchter, Lynn; Unciti-Broceta, Asier; Brunton, Valerie G.; Patton, E. Elizabeth; Biochemistry and Molecular Biology, School of Medicine5-Nitrofurans are antibiotic pro-drugs that have potential as cancer therapeutics. Here, we show that 5-nitrofurans can be bio-activated by aldehyde dehydrogenase (ALDH) 1A1/1A3 enzymes that are highly expressed in a subpopulation of cancer-initiating (stem) cells. We discover that the 5-nitrofuran, nifuroxazide, is selective for bio-activation by ALDH1 isoforms over ALDH2, whereby it both oxidizes ALDH1 and is converted to cytotoxic metabolites in a two-hit pro-drug mechanism. We show that ALDH1High melanoma cells are sensitive to nifuroxazide, while ALDH1A3 loss-of-function mutations confer drug resistance. In tumors, nifuroxazide targets ALDH1High melanoma subpopulations with the subsequent loss of melanoma-initiating cell potential. BRAF and MEK inhibitor therapy increases ALDH1 expression in patient melanomas, and effectively combines with nifuroxazide in melanoma cell models. The selective eradication of ALDH1High cells by nifuroxazide-ALDH1 activation goes beyond current strategies based on inhibiting ALDH1 and provides a rational basis for the nifuroxazide mechanism of action in cancer.Item A Pan-ALDH1A Inhibitor Induces Necroptosis in Ovarian Cancer Stem-like Cells(Elsevier, 2019-03-12) Chefetz, Ilana; Grimley, Edward; Yang, Kun; Hong, Linda; Vinogradova, Ekaterina V.; Suciu, Radu; Kovalenko, Ilya; Karnak, David; Morgan, Cynthia A.; Chtcherbinine, Mikhail; Buchman, Cameron; Huddle, Brandt; Barraza, Scott; Morgan, Meredith; Bernstein, Kara A.; Yoon, Euisik; Lombard, David B.; Bild, Andrea; Mehta, Geeta; Romero, Iris; Chiang, Chun-Yi; Landen, Charles; Cravatt, Benjamin; Hurley, Thomas D.; Larsen, Scott D.; Buckanovich, Ronald J.; Department of Biochemistry and Molecular Biology, School of MedicineSummary Ovarian cancer is typified by the development of chemotherapy resistance. Chemotherapy resistance is associated with high aldehyde dehydrogenase (ALDH) enzymatic activity, increased cancer “stemness,” and expression of the stem cell marker CD133. As such, ALDH activity has been proposed as a therapeutic target. Although it remains controversial which of the 19 ALDH family members drive chemotherapy resistance, ALDH1A family members have been primarily linked with chemotherapy resistant and stemness. We identified two ALDH1A family selective inhibitors (ALDH1Ai). ALDH1Ai preferentially kills CD133+ ovarian cancer stem-like cells (CSCs). ALDH1Ai induce necroptotic CSC death, mediated, in part, by the induction of mitochondrial uncoupling proteins and reduction in oxidative phosphorylation. ALDH1Ai is highly synergistic with chemotherapy, reducing tumor initiation capacity and increasing tumor eradication in vivo. These studies link ALDH1A with necroptosis and confirm the family as a critical therapeutic target to overcome chemotherapy resistance and improve patient outcomes.Item ZIP4 Is a Novel Cancer Stem Cell Marker in High-Grade Serous Ovarian Cancer(MDPI, 2020-12-09) Fan, Qipeng; Zhang, Wen; Emerson, Robert E.; Xu, Yan; Obstetrics and Gynecology, School of MedicineHigh-grade serous ovarian cancer (HGSOC) is one of the most deadly and heterogenic cancers. We have recently shown that ZIP4 (gene name SLC39A4), a zinc transporter, is functionally involved in cancer stem cell (CSC)-related cellular activities in HGSOC. Here, we identified ZIP4 as a novel CSC marker in HGSOC. Fluorescence-activated cell sorter (FACS)-sorted ZIP4+, but not ZIP4- cells, formed spheroids and displayed self-renewing and differentiation abilities. Over-expression of ZIP4 conferred drug resistance properties in vitro. ZIP4+, but not ZIP4- cells, formed tumors/ascites in vivo. We conducted limiting dilution experiments and showed that 100-200 ZIP4+ cells from both PE04 and PEA2 cells formed larger tumors than those from 100-200 ALDH+ cells in mice. Mechanistically, we found that ZIP4 was an upstream regulator of another CSC-marker, NOTCH3, in HGSOC cells. NOTCH3 was functionally involved in spheroid formation in vitro and tumorigenesis in vivo in HGSOC. Genetic compensation studies showed that NOTCH3, but not NOTCH1, was a critical downstream mediator of ZIP4. Furthermore, NOTCH3, but not NOTCH1, physically bound to ZIP4. Collectively, our data suggest that ZIP4 is a novel CSC marker and the new ZIP4-NOTCH3 axis represents important therapeutic targets in HGSOC.