- Browse by Subject
Browsing by Subject "AKT1"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item AKT1 mediates multiple phosphorylation events that functionally promote HSF1 activation(Wiley, 2022) Lu, Wen-Cheng; Omari, Ramsey; Ray, Haimanti; Wang, John; Williams, Imade; Jacobs, Curteisha; Hockaden, Natasha; Bochman, Matthew L.; Carpenter, Richard L.; Biochemistry and Molecular Biology, School of MedicineThe heat stress response activates the transcription factor heat shock factor 1 (HSF1), which subsequently upregulates heat shock proteins to maintain the integrity of the proteome. HSF1 activation requires nuclear localization, trimerization, DNA binding, phosphorylation and gene transactivation. Phosphorylation at S326 is an important regulator of HSF1 transcriptional activity. Phosphorylation at S326 is mediated by AKT1, mTOR, p38, MEK1 and DYRK2. Here, we observed activation of HSF1 by AKT1 independently of mTOR. AKT2 also phosphorylated S326 of HSF1 but showed weak ability to activate HSF1. Similarly, mTOR, p38, MEK1 and DYRK2 all phosphorylated S326 but AKT1 was the most potent activator. Mass spectrometry showed that AKT1 also phosphorylated HSF1 at T142, S230 and T527 in addition to S326, whereas the other kinases did not. Subsequent investigation revealed that phosphorylation at T142 is necessary for HSF1 trimerization and that S230, S326 and T527 are required for HSF1 gene transactivation and recruitment of TFIIB and CDK9. Interestingly, T527 as a phosphorylated residue has not been previously shown and sits in the transactivation domain, further implying a role for this site in HSF1 gene transactivation. This study suggests that HSF1 hyperphosphorylation is targeted and these specific residues have direct function in regulating HSF1 transcriptional activity.Item AKT1 Transcriptomic Landscape in Breast Cancer Cells(MDPI, 2022-07-25) George, Bijesh; Gui, Bin; Raguraman, Rajeswari; Paul, Aswathy Mary; Nakshatri, Harikrishna; Pillai, Madhavan Radhakrishna; Kumar, Rakesh; Surgery, School of MedicineOverexpression and hyperactivation of the serine/threonine protein kinase B (AKT) pathway is one of the most common cellular events in breast cancer progression. However, the nature of AKT1-specific genome-wide transcriptomic alterations in breast cancer cells and breast cancer remains unknown to this point. Here, we delineate the impact of selective AKT1 knock down using gene-specific siRNAs or inhibiting the AKT activity with a pan-AKT inhibitor VIII on the nature of transcriptomic changes in breast cancer cells using the genome-wide RNA-sequencing analysis. We found that changes in the cellular levels of AKT1 lead to changes in the levels of a set of differentially expressed genes and, in turn, imply resulting AKT1 cellular functions. In addition to an expected positive relationship between the status of AKT1 and co-expressed cellular genes, our study unexpectedly discovered an inherent role of AKT1 in inhibiting the expression of a subset of genes in both unstimulated and growth factor stimulated breast cancer cells. We found that depletion of AKT1 leads to upregulation of a subset of genes-many of which are also found to be downregulated in breast tumors with elevated high AKT1 as well as upregulated in breast tumors with no detectable AKT expression. Representative experimental validation studies in two breast cancer cell lines showed a reasonable concurrence between the expression data from the RNA-sequencing and qRT-PCR or data from ex vivo inhibition of AKT1 activity in cancer patient-derived cells. In brief, findings presented here provide a resource for further understanding of AKT1-dependent modulation of gene expression in breast cancer cells and broaden the scope and significance of AKT1 targets and their functions.