ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "ADAS-Cog"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Sensitivity of memory subtests and learning slopes from the ADAS-Cog to distinguish along the continuum of the NIA-AA Research Framework for Alzheimer’s Disease
    (Taylor & Francis, 2023) Hammers, Dustin B.; Kostadinova, Ralitsa V.; Spencer, Robert J.; Ikanga, Jean N.; Unverzagt, Frederick W.; Risacher, Shannon L.; Apostolova, Liana G.; Alzheimer’s Disease Neuroimaging Initiative; Neurology, School of Medicine
    Despite extensive use of the Alzheimer's Disease (AD) Assessment Scale - Cognitive Subscale (ADAS-Cog) in AD research, exploration of memory subtests or process scores from the measure has been limited. The current study sought to establish validity for the ADAS-Cog Word Recall Immediate and Delayed Memory subtests and learning slope scores by showing that they are sensitive to AD biomarker status. Word Recall subtest and learning slope scores were calculated for 441 participants from the Alzheimer's Disease Neuroimaging Initiative (aged 55 to 90). All participants were categorized using the NIA-AA Research Framework - based on PET-imaging of β-amyloid (A) and tau (T) deposition - as Normal AD Biomarkers (A-T-), Alzheimer's Pathologic Change (A + T-), or Alzheimer's disease (A + T+). Memory subtest and learning slope performances were compared between biomarker status groups, and with regard to how well they discriminated samples with (A + T+) and without (A-T-) biomarkers. Lower Word Recall memory subtest scores - and scores for a particular learning slope calculation, the Learning Ratio - were observed for the AD (A + T+) group than the other biomarker groups. Memory subtest and Learning Ratio scores further displayed fair to good receiver operator characteristics when differentiating those with and without AD biomarkers. When comparing across learning slopes, the Learning Ratio metric consistently outperformed others. ADAS-Cog memory subtests and the Learning Ratio score are sensitive to AD biomarker status along the continuum of the NIA-AA Research Framework, and the results offer criterion validity for use of these subtests and process scores as unique markers of memory capacity.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University