ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "ACTH"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Hormones and cholinergic agents in insulin secretion in vitro
    (1968) Mayhew, Dale Allan
  • Loading...
    Thumbnail Image
    Item
    Independent of 5-HT1A receptors, neurons in the paraventricular hypothalamus mediate ACTH responses from MDMA
    (Elsevier, 2013-10-25) Zaretsky, Dmitry V.; Zaretskaia, Maria V.; DiMicco, Joseph A.; Durant, Pamela J.; Ross, Christian T.; Rusyniak, Daniel E.; Emergency Medicine, School of Medicine
    Acute and chronic complications from the substituted amphetamine 3,4-methylenedioxymethamphetamine (MDMA) are linked to activation of the hypothalamic-pituitary-adrenal (HPA) axis. How MDMA activates the HPA axis is not known. HPA responses to stress are known to be mediated through the paraventricular (PVH) hypothalamus and to involve serotonin-1a (5-HT1A) receptors. We sought to determine if the PVH and 5-HT1A receptors were also involved in mediating HPA responses to MDMA. Rats were pretreated with either saline or a 5-HT1A antagonist, WAY-100635 (WAY), followed by a systemic dose of MDMA (7.5mg/kg i.v.). Animals pretreated with WAY had significantly lower plasma ACTH concentrations after MDMA. To determine if neurons in the PVH were involved, and if their involvement was mediated by 5-HT1A receptors, rats implanted with guide cannulas targeting the PVH were microinjected with the GABAA receptor agonist muscimol, aCSF, or WAY followed by MDMA. Compared to aCSF, microinjections of muscimol significantly attenuated the MDMA-induced rise in plasma ACTH (126 vs. 588pg/ml, P=<0.01). WAY had no effect. Our data demonstrates that neurons in the PVH, independent of 5-HT1A receptors, mediate ACTH responses to MDMA.
  • Loading...
    Thumbnail Image
    Item
    Role of the Dorsomedial Hypothalamus in Responses Evoked from the Preoptic Area and by Systemic Administration of Interleukin-1β
    (2009-06-23T21:35:36Z) Hunt, Joseph L.; DiMicco, Joseph A.; Cummins, Theodore R.; Rusyniak, Daniel; Vasko, Michael R.
    Recent studies in anesthetized rats suggest that autonomic effects relating to thermoregulation that are evoked from the preoptic area (POA) may be mediated through activation of neurons in the dorsomedial hypothalamus (DMH). Disinhibition of neurons in the DMH produces not only cardiovascular changes but also increases in plasma adrenocorticotropic hormone (ACTH) and locomotor activity mimicking those evoked by microinjection of muscimol, a GABAA receptor agonist and neuronal inhibitor, into the POA. Therefore, I tested the hypothesis that all of these effects evoked from the POA are mediated through neurons in the DMH by assessing the effect of bilateral microinjection of muscimol into the DMH on the changes evoked by microinjection of muscimol into the POA in conscious rats. In addition, I tested the hypothesis that neurons in the DMH mediate a specific response that is thought to signal through the POA, the activation of the HPA axis evoked by systemic administration of the inflammatory cytokine IL-1β. After injection of vehicle into the DMH, injection of muscimol into the POA elicited marked increases in heart rate, arterial pressure, body temperature, plasma ACTH and locomotor activity and also increased Fos expression in the hypothalamic paraventricular nucleus (PVN), a region known to control the release of ACTH from the adenohypophysis, and the raphe pallidus, a medullary region known to mediate POA-evoked sympathetic responses. Prior microinjection of muscimol into the DMH produced a modest depression of baseline heart rate, arterial pressure, and body temperature but completely abolished all changes evoked from the POA. Microinjection of muscimol just anterior to the DMH had no effect on POA-evoked autonomic and neuroendocrine changes. Inhibition of neuronal activity in the DMH only partially attenuated the increased activity of the HPA axis following systemic injections of IL-1β. Thus, neurons in the DMH mediate a diverse array of physiological and behavioral responses elicited from the POA, suggesting that the POA represents an important source of inhibitory tone to key neurons in the DMH. However, it is clear that the inflammatory cytokine IL-1β must employ other pathways that are DMH-, and possibly POA-, independent to activate the HPA axis.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University