- Browse by Subject
Browsing by Subject "ABS"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item 3D Printed ABS and Carbon Fiber Reinforced Polymer Specimens for Engineering Education(Springer, 2016) Golub, Michael; Guo, Xingye; Jung, Mingyo; Zhang, Jing; Department of Mechanical Engineering, School of Engineering and TechnologyThree 3D printed plastic materials, ABS, ABS plus, and CFRP, have been studied for their potential applications in engineering education. Using tensile test, the stress strain curves of the materials have been measured. The Young’s modulus, ultimate strength, and fracture toughness of the materials are calculated from the stress strain curve. The results show that CFRP has the highest stiffness or Young’s modulus. ABS plus has strongest mechanical properties, with highest ultimate strength and fracture toughness. With the measured properties, the 3D printed samples are a viable solution for engineering students to learn mechanical properties of materials.Item Effect of Printing Orientation on Strength of 3D Printed ABS Plastics(Springer, 2016) Cai, Linlin; Byrd, Philip; Zhang, Hanyin; Schlarman, Kate; Zhang, Yi; Golub, Michael; Zhang, Jing; Department of Mechanical Engineering, School of Engineering and TechnologyThe mechanical strengths of ABS (Acrylonitrile Butadiene Styrene) components fabricated by fused deposition modeling (FDM) technique have been studied, with the focus on the effect of printing orientations on the strength. Using the properties derived from stress-strain curves of the samples, the 0-degree printed sample has the strongest mechanical properties, which is likely due to preferred orientations in individual slice.