- Browse by Subject
Browsing by Subject "AAV vectors"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Optimizing the transduction efficiency of human hematopoietic stem cells using capsid-modified AAV6 vectors in vitro and in a xenograft mouse model in vivo(Elsevier, 2013) Song, Liujiang; Kauss, M. Ariel; Kopin, Etana; Chandra, Manasa; Ul-Hasan, Taihra; Miller, Erin; Jayandharan, Giridhara R.; Rivers, Angela E.; Aslanidi, George V.; Ling, Chen; Li, Baozheng; Ma, Wenqin; Li, Xiaomiao; Andino, Lourdes M.; Zhong, Li; Tarantal, Alice F.; Yoder, Mervin C.; Wong, Kamehameha K., Jr.; Tan, Mengqun; Chatterjee, Saswati; Srivastava, Arun; Pediatrics, School of MedicineBackground aims: Although recombinant adeno-associated virus serotype 2 (AAV2) vectors have gained attention because of their safety and efficacy in numerous phase I/II clinical trials, their transduction efficiency in hematopoietic stem cells (HSCs) has been reported to be low. Only a few additional AAV serotype vectors have been evaluated, and comparative analyses of their transduction efficiency in HSCs from different species have not been performed. Methods: We evaluated the transduction efficiency of all available AAV serotype vectors (AAV1 through AAV10) in primary mouse, cynomolgus monkey and human HSCs. The transduction efficiency of the optimized AAV vectors was also evaluated in human HSCs in a murine xenograft model in vivo. Results: We observed that although there are only six amino acid differences between AAV1 and AAV6, AAV1, but not AAV6, transduced mouse HSCs well, whereas AAV6, but not AAV1, transduced human HSCs well. None of the 10 serotypes transduced cynomolgus monkey HSCs in vitro. We also evaluated the transduction efficiency of AAV6 vectors containing mutations in surface-exposed tyrosine residues. We observed that tyrosine (Y) to phenylalanine (F) point mutations in residues 445, 705 and 731 led to a significant increase in transgene expression in human HSCs in vitro and in a mouse xenograft model in vivo. Conclusions: These studies suggest that the tyrosine-mutant AAV6 serotype vectors are the most promising vectors for transducing human HSCs and that it is possible to increase further the transduction efficiency of these vectors for their potential use in HSC-based gene therapy in humans.Item Self-complementary Adeno-associated Virus 2 (AAV)–T Cell Protein Tyrosine Phosphatase Vectors as Helper Viruses to Improve Transduction Efficiency of Conventional Single-Stranded AAV Vectors in Vitro and in Vivo(Elsevier, 2004-11-01) Zhong, Li; Chen, Linyuan; Li, Yanjun; Qing, Keyun; Weigel-Kelley, Kirsten A.; Chan, Rebecca J.; Yoder, Mervin C.; Medicine, School of MedicineRecombinant vectors based on adeno-associated virus type 2 (AAV) target the liver efficiently, but the transgene expression is limited to ∼5% of hepatocytes. The lack of efficient transduction is due, in part, to the presence of a cellular protein, FKBP52, phosphorylated forms of which inhibit the viral second-strand DNA synthesis. We have documented that dephosphorylation of FKBP52 at tyrosine residues by the cellular T cell protein tyrosine phosphatase (TC-PTP) enhances AAV-mediated transduction in primary murine hematopoietic cells from TC-PTP-transgenic mice. We have also documented that AAV-mediated transduction is significantly enhanced in hepatocytes in TC-PTP-transgenic as well as in FKBP52-deficient mice because of efficient viral second-strand DNA synthesis. In this study, we evaluated whether co-infection of conventional single-stranded AAV vectors with self-complementary AAV-TC-PTP vectors leads to increased transduction efficiency of conventional AAV vectors in established human cell lines in vitro and in primary murine hepatocytes in vivo. We demonstrate here that scAAV-TC-PTP vectors serve as a helper virus in augmenting the transduction efficiency of conventional AAV vectors in vitro as well as in vivo which correlates directly with the extent of second-strand DNA synthesis of conventional single-stranded AAV vectors. Toxicological studies following tail-vein injections of scAAV-TC-PTP vectors in experimental mice show no evidence of any adverse effect in any of the organs in any of the mice for up to 13 weeks. Thus, this novel co-infection strategy should be useful in circumventing one of the major obstacles in the optimal use of recombinant AAV vectors in human gene therapy.