ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "λ-dynamics"

Now showing 1 - 3 of 3
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    A λ-dynamics investigation of insulin Wakayama and other A3 variant binding affinities to the insulin receptor
    (bioRxiv, 2024-03-17) Barron, Monica P.; Vilseck, Jonah Z.; Biochemistry and Molecular Biology, School of Medicine
    Insulin Wakayama is a clinical insulin variant where a conserved valine at the third residue on insulin’s A chain (ValA3) is replaced with a leucine (LeuA3), impairing insulin receptor (IR) binding by 140-500 fold. This severe impact on binding from such a subtle modification has posed an intriguing problem for decades. Although experimental investigations of natural and unnatural A3 mutations have highlighted the sensitivity of insulin-IR binding to minor changes at this site, an atomistic explanation of these binding trends has remained elusive. We investigate this problem computationally using λ-dynamics free energy calculations to model structural changes in response to perturbations of the ValA3 side chain and to calculate associated relative changes in binding free energy (ΔΔGbind). The Wakayama LeuA3 mutation and seven other A3 substitutions were studied in this work. The calculated ΔΔGbind results showed high agreement compared to experimental binding potencies with a Pearson correlation of 0.88 and a mean unsigned error of 0.68 kcal/mol. Extensive structural analyses of λ-dynamics trajectories revealed that critical interactions were disrupted between insulin and the insulin receptor as a result of the A3 mutations. This investigation also quantifies the effect that adding an A3 Cδ atom or losing an A3 Cγ atom has on insulin’s binding affinity to the IR. Thus, λ-dynamics was able to successfully model the effects of subtle modifications to insulin’s A3 side chain on its protein-protein interactions with the IR and shed new light on a decades-old mystery: the exquisite sensitivity of hormone-receptor binding to a subtle modification of an invariant insulin residue.
  • Loading...
    Thumbnail Image
    Item
    Accurate in silico predictions of modified RNA interactions to a prototypical RNA-binding protein with λ-dynamics
    (bioRxiv, 2024-12-11) Angelo, Murphy; Bhargava, Yash; Kierzek, Elzbieta; Kierzek, Ryszard; Hayes, Ryan L.; Zhang, Wen; Vilseck, Jonah Z.; Aoki, Scott Takeo; Biochemistry and Molecular Biology, School of Medicine
    RNA-binding proteins shape biology through their widespread functions in RNA biochemistry. Their function requires the recognition of specific RNA motifs for targeted binding. These RNA binding elements can be composed of both unmodified and chemically modified RNAs, of which over 170 chemical modifications have been identified in biology. Unmodified RNA sequence preferences for RNA-binding proteins have been widely studied, with numerous methods available to identify their preferred sequence motifs. However, only a few techniques can detect preferred RNA modifications, and no current method can comprehensively screen the vast array of hundreds of natural RNA modifications. Prior work demonstrated that λ-dynamics is an accurate in silico method to predict RNA base binding preferences of an RNA-binding antibody. This work extends that effort by using λ-dynamics to predict unmodified and modified RNA binding preferences of human Pumilio, a prototypical RNA binding protein. A library of RNA modifications was screened at eight nucleotide positions along the RNA to identify modifications predicted to affect Pumilio binding. Computed binding affinities were compared with experimental data to reveal high predictive accuracy. In silico force field accuracies were also evaluated between CHARMM and Amber RNA force fields to determine the best parameter set to use in binding calculations. This work demonstrates that λ-dynamics can predict RNA interactions to a bona fide RNA-binding protein without the requirements of chemical reagents or new methods to experimentally test binding at the bench. Advancing in silico methods like λ-dynamics will unlock new frontiers in understanding how RNA modifications shape RNA biochemistry.
  • Loading...
    Thumbnail Image
    Item
    Generalizing the Discrete Gibbs Sampler-based λ-Dynamics Approach for Multisite Sampling of Many Ligands
    (American Chemical Society, 2021) Vilseck, Jonah Z.; Ding, Xinqiang; Hayes, Ryan L.; Brooks, Charles L., III.; Biochemistry and Molecular Biology, School of Medicine
    In this work, the discrete λ variant of the Gibbs sampler-based λ-dynamics (d-GSλD) method is developed to enable multiple functional group perturbations to be investigated at one or more sites of substitution off a common ligand core. The theoretical framework and special considerations for constructing discrete λ states for multisite d-GSλD are presented. The precision and accuracy of the d-GSλD method is evaluated with three test cases of increasing complexity. Specifically, methyl → methyl symmetric perturbations in water, 1,4-benzene hydration free energies and protein-ligand binding affinities for an example HIV-1 reverse transcriptase inhibitor series are computed with d-GSλD. Complementary MSλD calculations were also performed to compare with d-GSλD's performance. Excellent agreement between d-GSλD and MSλD is observed, with mean unsigned errors of 0.12 and 0.22 kcal/mol for computed hydration and binding free energy test cases, respectively. Good agreement with experiment is also observed, with errors of 0.5-0.7 kcal/mol. These findings support the applicability of the d-GSλD free energy method for a variety of molecular design problems, including structure-based drug design. Finally, a discussion of d-GSλD versus MSλD approaches is presented to compare and contrast features of both methods.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University