- Browse by Subject
Browsing by Subject "β-cell dysfunction"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Cell-Free DNA Fragments as Biomarkers of Islet β-Cell Death in Obesity and Type 2 Diabetes(MDPI, 2021-02-21) Arosemena, Marilyn; Meah, Farah A.; Mather, Kieren J.; Tersey, Sarah A.; Mirmira, Raghavendra G.; Medicine, School of MedicineType 2 diabetes (T2D) typically occurs in the setting of obesity and insulin resistance, where hyperglycemia is associated with decreased pancreatic β-cell mass and function. Loss of β-cell mass has variably been attributed to β-cell dedifferentiation and/or death. In recent years, it has been proposed that circulating epigenetically modified DNA fragments arising from β cells might be able to report on the potential occurrence of β-cell death in diabetes. Here, we review published literature of DNA-based β-cell death biomarkers that have been evaluated in human cohorts of islet transplantation, type 1 diabetes, and obesity and type 2 diabetes. In addition, we provide new data on the applicability of one of these biomarkers (cell free unmethylated INS DNA) in adult cohorts across a spectrum from obesity to T2D, in which no significant differences were observed, and compare these findings to those previously published in youth cohorts where differences were observed. Our analysis of the literature and our own data suggest that β-cell death may occur in subsets of individuals with obesity and T2D, however a more sensitive method or refined study designs are needed to provide better alignment of sampling with disease progression events.Item Increased Steroidogenic Acute Regulatory Protein Contributes to Cholesterol-induced β-Cell Dysfunction(Oxford University Press, 2025) Akter, Rehana; Hogan, Meghan F.; Esser, Nathalie; Barrow, Breanne M.; Castillo, Joseph J.; Boyko, Edward J.; Templin, Andrew T.; Hull, Rebecca L.; Zraika, Sakeneh; Kahn, Steven E.; Medicine, School of MedicineHypercholesterolemia is often observed in individuals with type 2 diabetes. Cholesterol accumulation in subcellular compartments within islet β-cells can result in insulin secretory dysfunction, which is a key pathological feature of diabetes. Previously, we demonstrated that expression of the mitochondrial cholesterol transport protein, steroidogenic acute regulatory protein (StAR), is induced in islets under conditions of β-cell dysfunction. However, whether it contributes to mitochondrial cholesterol accumulation in β-cells and cholesterol-induced β-cell dysfunction has not been determined. Thus, we sought to examine the role of StAR in isolated mouse islets under conditions of excess exogenous cholesterol. Cholesterol treatment of islets upregulated StAR expression, which was associated with cholesterol accumulation in mitochondria, decreased mitochondrial membrane potential and impaired mitochondrial oxidative phosphorylation. Impaired insulin secretion and reduced islet insulin content were also observed in cholesterol-laden islets. To determine the impact of StAR overexpression in β-cells per se, a lentivirus was used to increase StAR expression in INS-1 cells. Under these conditions, StAR overexpression was sufficient to increase mitochondrial cholesterol content, impair mitochondrial oxidative phosphorylation, and reduce insulin secretion. These findings suggest that elevated cholesterol in diabetes may contribute to β-cell dysfunction via increases in StAR-mediated mitochondrial cholesterol transport and accumulation.Item Islet Autoimmunity is Highly Prevalent and Associated With Diminished β-Cell Function in Patients With Type 2 Diabetes in the Grade Study(American Diabetes Association, 2022-01-21) Brooks-Worrell, Barbara; Hampe, Christiane S.; Hattery, Erica G.; Palomino, Brenda; Zangeneh, Sahar Z.; Utzschneider, Kristina; Kahn, Steven E.; Larkin, Mary E.; Johnson, Mary L.; Mather, Kieren J.; Younes, Naji; Rasouli, Neda; Desouza, Cyrus; Cohen, Robert M.; Park, Jean Y.; Florez, Hermes J.; Valencia, Willy Marcos; GRADE β-cell Ancillary Study Network; Shojaie, Ali; Palmer, Jerry P.; Balasubramanyam, Ashok; Medicine, School of MedicineIslet autoimmunity may contribute to β-cell dysfunction in type 2 diabetes (T2D). Its prevalence and clinical significance have not been rigorously determined. In this ancillary study to the Glycemia Reduction Approaches in Diabetes-A Comparative Effectiveness (GRADE) Study, we investigated the prevalence of cellular and humoral islet autoimmunity in patients with T2D duration 4·0±3·0 y, HbA1c 7·5±0·5% on metformin alone. We measured T cell autoreactivity against islet proteins, islet autoantibodies against GAD65, IA2, ZnT8, and β-cell function. Cellular islet autoimmunity was present in 41·3%, humoral islet autoimmunity in 13·5%, and both in 5·3%. β-cell function calculated as iAUC-CG and ΔC-peptide(0- 30)/Δglucose(0-30) from an oral glucose tolerance test was lower among T cell-positives (T+) than T cell-negatives (T-) using two different adjustments for insulin sensitivity (iAUC-CG: 13·2% [95% CI 0·3, 24·4%] or 11·4% [95% CI 0·4, 21·2%] lower; ΔC-peptide(0-30)/Δglucose(0-30)) 19% [95% CI 3·1, 32·3%] or 17·7% [95% CI 2·6, 30·5%] lower). T+ patients had 17% higher HbA1c (95% CI 0·07, 0·28) and 7·7 mg/dL higher fasting plasma glucose levels (95% CI 0·2,15·3) than T- patients. We conclude that islet autoimmunity is much more prevalent in T2D patients than previously reported. T cell-mediated autoimmunity is associated with diminished β-cell function and worse glycemic control.Item β-Cell pre-mir-21 induces dysfunction and loss of cellular identity by targeting transforming growth factor beta 2 (Tgfb2) and Smad family member 2 (Smad2) mRNAs(Elsevier, 2021-11) Ibrahim, Sara; Johnson, Macey; Hernandez Stephens, Clarissa; Xu, Jerry; Moore, Rachel; Mariani, Andrea; Contreras, Christopher; Syed, Farooq; Mirmira, Raghavendra G.; Anderson, Ryan M.; Sims, Emily K.; Biochemistry and Molecular Biology, School of MedicineObjective: β-cell microRNA-21 (miR-21) is increased by islet inflammatory stress but it decreases glucose-stimulated insulin secretion (GSIS). Thus, we sought to define the effects of miR-21 on β-cell function using in vitro and in vivo systems. Methods: We developed a tetracycline-on system of pre-miR-21 induction in clonal β-cells and human islets, along with transgenic zebrafish and mouse models of β-cell-specific pre-miR-21 overexpression. Results: β-cell miR-21 induction markedly reduced GSIS and led to reductions in transcription factors associated with β-cell identity and increased markers of dedifferentiation, which led us to hypothesize that miR-21 induces β-cell dysfunction by loss of cell identity. In silico analysis identified transforming growth factor-beta 2 (Tgfb2) and Smad family member 2 (Smad2) mRNAs as predicted miR-21 targets associated with the maintenance of β-cell identity. Tgfb2 and Smad2 were confirmed as direct miR-21 targets through RT-PCR, immunoblot, pulldown, and luciferase assays. In vivo zebrafish and mouse models exhibited glucose intolerance, decreased peak GSIS, decreased expression of β-cell identity markers, increased insulin and glucagon co-staining cells, and reduced Tgfb2 and Smad2 expression. Conclusions: These findings implicate miR-21-mediated reduction of mRNAs specifying β-cell identity as a contributor to β-cell dysfunction by the loss of cellular differentiation.