ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "β-Lapachone"

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    Inhibition of TXNRD or SOD1 overcomes NRF2-mediated resistance to β-lapachone
    (Elsevier, 2020-02) Torrente, Laura; Prieto-Farigua, Nicolas; Falzone, Aimee; Elkins, Cody M.; Boothman, David A.; Haura, Eric B.; DeNicola, Gina M.; Biochemistry and Molecular Biology, School of Medicine
    Alterations in the NRF2/KEAP1 pathway result in the constitutive activation of NRF2, leading to the aberrant induction of antioxidant and detoxification enzymes, including NQO1. The NQO1 bioactivatable agent β-lapachone can target cells with high NQO1 expression but relies in the generation of reactive oxygen species (ROS), which are actively scavenged in cells with NRF2/KEAP1 mutations. However, whether NRF2/KEAP1 mutations influence the response to β-lapachone treatment remains unknown. To address this question, we assessed the cytotoxicity of β-lapachone in a panel of NSCLC cell lines bearing either wild-type or mutant KEAP1. We found that, despite overexpression of NQO1, KEAP1 mutant cells were resistant to β-lapachone due to enhanced detoxification of ROS, which prevented DNA damage and cell death. To evaluate whether specific inhibition of the NRF2-regulated antioxidant enzymes could abrogate resistance to β-lapachone, we systematically inhibited the four major antioxidant cellular systems using genetic and/or pharmacologic approaches. We demonstrated that inhibition of the thioredoxin-dependent system or copper-zinc superoxide dismutase (SOD1) could abrogate NRF2-mediated resistance to β-lapachone, while depletion of catalase or glutathione was ineffective. Interestingly, inhibition of SOD1 selectively sensitized KEAP1 mutant cells to β-lapachone exposure. Our results suggest that NRF2/KEAP1 mutational status might serve as a predictive biomarker for response to NQO1-bioactivatable quinones in patients. Further, our results suggest SOD1 inhibition may have potential utility in combination with other ROS inducers in patients with KEAP1/NRF2 mutations.
  • Loading...
    Thumbnail Image
    Item
    PCNA Inhibition Enhances the Cytotoxicity of β-Lapachone in NQO1-Positive Cancer Cells by Augmentation of Oxidative Stress-induced DNA Damage
    (Elsevier, 2021) Su, Xiaolin; Wang, Jiangwei; Jiang, Lingxiang; Chen, Yaomin; Lu, Tao; Mendonca, Marc S.; Huang, Xiumei; Biochemistry and Molecular Biology, School of Medicine
    β-Lapachone is a classic quinone-containing antitumor NQO1-bioactivatable drug that directly kills NQO1-overexpressing cancer cells. However, the clinical applications of β-lapachone are primarily limited by its high toxicity and modest lethality. To overcome this side effect and expand the therapeutic utility of β-lapachone, we demonstrate the effects of a novel combination therapy including β-lapachone and the proliferating cell nuclear antigen (PCNA) inhibitor T2 amino alcohol (T2AA) on various NQO1+ cancer cells. PCNA has DNA clamp processivity activity mediated by encircling double-stranded DNA to recruit proteins involved in DNA replication and DNA repair. In this study, we found that compared to monotherapy, a nontoxic dose of the T2AA synergized with a sublethal dose of β-lapachone in an NQO1-dependent manner and that combination therapy prevented DNA repair, increased double-strand break (DSB) formation and PARP1 hyperactivation and induced catastrophic energy loss. We further determined that T2AA promoted programmed necrosis and G1/S phase cell cycle arrest in β-lapachone-treated NQO1+ cancer cells. Our findings show novel evidence for a new therapeutic approach that combines of β-lapachone treatment with PCNA inhibition that is highly effective in treating NQO1+ solid tumor cells.
  • Loading...
    Thumbnail Image
    Item
    β-Lapachone promotes the recruitment and polarization of tumor-associated neutrophils (TANs) toward an antitumor (N1) phenotype in NQO1-positive cancers
    (Taylor & Francis, 2024-06-04) Tumbath, Soumya; Jiang, Lingxiang; Li, Xiaoguang; Zhang, Taolan; Zahid, Kashif Rafiq; Zhao, Ye; Zhou, Hao; Yin, Zhijun; Lu, Tao; Jiang, Shu; Chen, Yaomin; Chen, Xiang; Fu, Yang-Xin; Huang, Xiumei; Radiation Oncology, School of Medicine
    NAD(P)H:quinone oxidoreductase 1 (NQO1) is overexpressed in most solid cancers, emerging as a promising target for tumor-selective killing. β-Lapachone (β-Lap), an NQO1 bioactivatable drug, exhibits significant antitumor effects on NQO1-positive cancer cells by inducing immunogenic cell death (ICD) and enhancing tumor immunogenicity. However, the interaction between β-Lap-mediated antitumor immune responses and neutrophils, novel antigen-presenting cells (APCs), remains unknown. This study demonstrates that β-Lap selectively kills NQO1-positive murine tumor cells by significantly increasing intracellular ROS formation and inducing DNA double strand breaks (DSBs), resulting in DNA damage. Treatment with β-Lap efficiently eradicates immunocompetent murine tumors and significantly increases the infiltration of tumor-associated neutrophils (TANs) into the tumor microenvironment (TME), which plays a crucial role in the drug's therapeutic efficacy. Further, the presence of β-Lap-induced antigen medium leads bone marrow-derived neutrophils (BMNs) to directly kill murine tumor cells, aiding in dendritic cells (DCs) recruitment and significantly enhancing CD8+ T cell proliferation. β-Lap treatment also drives the polarization of TANs toward an antitumor N1 phenotype, characterized by elevated IFN-β expression and reduced TGF-β cytokine expression, along with increased CD95 and CD54 surface markers. β-Lap treatment also induces N1 TAN-mediated T cell cross-priming. The HMGB1/TLR4/MyD88 signaling cascade influences neutrophil infiltration into β-Lap-treated tumors. Blocking this cascade or depleting neutrophil infiltration abolishes the antigen-specific T cell response induced by β-Lap treatment. Overall, this study provides comprehensive insights into the role of tumor-infiltrating neutrophils in the β-Lap-induced antitumor activity against NQO1-positive murine tumors.
  • Loading...
    Thumbnail Image
    Item
    β-Lapachone Selectively Kills Hepatocellular Carcinoma Cells by Targeting NQO1 to Induce Extensive DNA Damage and PARP1 Hyperactivation
    (Frontiers, 2021) Zhao, Wenxiu; Jiang, Lingxiang; Fang, Ting; Fang, Fei; Liu, Yingchun; Zhao, Ye; You, Yuting; Zhou, Hao; Su, Xiaolin; Wang, Jiangwei; Liu, Sheng; Chen, Yaomin; Wan, Jun; Huang, Xiumei; Radiation Oncology, School of Medicine
    Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death globally. Currently there is a lack of tumor-selective and efficacious therapies for hepatocellular carcinoma. β-Lapachone (ARQ761 in clinical form) selectively kill NADPH: quinone oxidoreductase 1 (NQO1)-overexpressing cancer cells. However, the effect of β-Lapachone on HCC is virtually unknown. In this study, we found that relatively high NQO1 and low catalase levels were observed in both clinical specimens collected from HCC patients and HCC tumors from the TCGA database. β-Lapachone treatment induced NQO1-selective killing of HCC cells and caused ROS formation and PARP1 hyperactivation, resulting in a significant decrease in NAD+ and ATP levels and a dramatic increase in double-strand break (DSB) lesions over time in vitro. Administration of β-Lapachone significantly inhibited tumor growth and prolonged survival in a mouse xenograft model in vivo. Our data suggest that NQO1 is an ideal potential biomarker, and relatively high NQO1:CAT ratios in HCC tumors but low ratios in normal tissues offer an optimal therapeutic window to use β-Lapachone. This study provides novel preclinical evidence for β-Lapachone as a new promising chemotherapeutic agent for use in NQO1-positive HCC patients.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University