- Browse by Subject
Chemistry and Chemical Biology Works
Permanent URI for this collection
Browse
Browsing Chemistry and Chemical Biology Works by Subject "2D nanosheets"
Now showing 1 - 1 of 1
Results Per Page
Sort Options
Item Colloidal Synthesis of Single-Layer Quasi-Ruddlesden–Popper Phase Bismuth-Based Two-Dimensional Perovskite Nanosheets with Controllable Optoelectronic Properties(ACS, 2021-07) Lee, Jacob T.; Seifert, Soenke; Sardar, Rajesh; Chemistry, School of ScienceSingle- and few-layered two-dimensional (2D) nanomaterials have attracted intense research interest in the last two decades due to their unique electronic and optoelectronic properties leading to various potential applications. Herein, we report the colloidal synthesis of Bi-based 2D perovskite nanosheets (PEG6-NH3+)nCs3–nBi2X9, where X = Cl, Br, and I, through careful design of reaction conditions and selection of poly(ethylene glycol) (PEG6) surface passivating ligands. The 2D nanosheets are ∼5 nm in thickness with micron-sized lateral dimensions and display composition-dependent band gap and work function modulation. Small-angle X-ray scattering analysis substantiates that the individual inorganic crystal layer, Cs3–nBi2X9, is separated by the spacer, PEG6 ligand. Additionally, we determined that PEG6-NH2 is an essential passivating ligand and spacer for the formation of Bi-based 2D nanosheets. Most importantly, controlled crystallization of the colloidal dispersion of nanosheets results in the formation of superlattice microstructures of the quasi-Ruddlesden–Popper phase. These microstructures can be exfoliated to ultrathin nanosheets by overcoming the van der Waals interaction between the organic passivating layers. The controlled synthesis of lead-free 2D perovskite nanosheets presented here can expand their utility to photocatalytic and optoelectronic applications with reduced toxicity.