Saptarshi Purkayastha

Permanent URI for this collection

Risks and Opportunities of AI Recognition of Patient Race in Medical Imaging

Previous studies in medical imaging have shown disparate abilities of artificial intelligence (AI) to detect a person's race, yet there is no known correlation for race on medical imaging that would be obvious to human experts when interpreting the images. His recent work published in Lancet Digital Health demonstrates that deep learning models have extremely high accuracy at identifying self-reported race from medical images such as X-rays, MRIs and CTs. This ability raises serious concerns among some researchers. Such software might group patients, or influence their care, by factoring in race. These AI models work very well on poor quality, distorted and even images where many parts of the image were deliberately cut out. These types of categorizations could lead to inequality in providing health care and making recommendations, and human decision makers might not understand how and why AI models are making the recommendations. Engineers, clinical researchers and informaticians need to get together to identify how AI models are able to have these superhuman capabilities.

Professor Purkayastha's translation of research into potential ways to identify and mitigate risks of deploying AI models in clinical practice to avoid racial issues in healthcare treatment is another example of how IUPUI's faculty members are TRANSLATING their RESEARCH INTO PRACTICE.

Browse