- Browse by Author
Browsing by Author "von Holzen, Urs"
Now showing 1 - 10 of 13
Results Per Page
Sort Options
Item Cytokine Interaction With Cancer-Associated Fibroblasts in Esophageal Cancer(Sage, 2022) Hassan, Md Sazzad; Cwidak, Nicholas; Awasthi, Niranjan; von Holzen, Urs; Surgery, School of MedicineEsophageal cancer (EC) is a highly aggressive cancer with poor outcomes under current treatment regimens. More recent findings suggest stroma elements, specifically cancer-associated fibroblasts (CAFs), play a role in disease occurrence and progression. Cancer-associated fibroblasts are largely the product of converted fibroblasts, but a variety of other local cell types including epithelial cells, endothelial cells, and mesenchymal cells have also been shown to transform to CAFs under the correct conditions. Cancer-associated fibroblasts primarily function in the communication between the tumor microenvironment and cancer cells via cytokine and chemokine secretions that accentuate immunosuppression and cancer growth. Cancer-associated fibroblasts also pose issues for EC treatment by contributing to resistance of current chemotherapeutics like cisplatin. Targeting this cell type directly proves difficult given the heterogeneity between CAFs subpopulations, but emerging research provides hope that treatment is on the horizon. This review aims to unravel some of the complexities surrounding CAFs’ impact on EC growth and therapy.Item Cytokine Interaction With Cancer-Associated Fibroblasts in Esophageal Cancer(Sage, 2022) Hassan, Md Sazzad; Cwidak, Nicholas; Awasthi, Niranjan; von Holzen, Urs; Surgery, School of MedicineEsophageal cancer (EC) is a highly aggressive cancer with poor outcomes under current treatment regimens. More recent findings suggest stroma elements, specifically cancer-associated fibroblasts (CAFs), play a role in disease occurrence and progression. Cancer-associated fibroblasts are largely the product of converted fibroblasts, but a variety of other local cell types including epithelial cells, endothelial cells, and mesenchymal cells have also been shown to transform to CAFs under the correct conditions. Cancer-associated fibroblasts primarily function in the communication between the tumor microenvironment and cancer cells via cytokine and chemokine secretions that accentuate immunosuppression and cancer growth. Cancer-associated fibroblasts also pose issues for EC treatment by contributing to resistance of current chemotherapeutics like cisplatin. Targeting this cell type directly proves difficult given the heterogeneity between CAFs subpopulations, but emerging research provides hope that treatment is on the horizon. This review aims to unravel some of the complexities surrounding CAFs' impact on EC growth and therapy.Item Inhibition of Insulin-like Growth Factor 1 Receptor/Insulin Receptor Signaling by Small-Molecule Inhibitor BMS-754807 Leads to Improved Survival in Experimental Esophageal Adenocarcinoma(MDPI, 2024-09-17) Hassan, Md Sazzad; Johnson, Chloe; Ponna, Saisantosh; Scofield, Dimitri; Awasthi, Niranjan; von Holzen, Urs; Surgery, School of MedicineThe insulin-like growth factor-1 (IGF-1) and insulin axes are upregulated in obesity and obesity-associated esophageal adenocarcinoma (EAC). Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) is a contemporary nanotechnology-based paclitaxel (PT) bound to human albumin, ensuring its solubility in water rather than a toxic solvent. Here, we examined the benefits of inhibiting insulin-like growth factor-1 receptor/insulin receptor (IGF-1/IR) signaling and the enhancement of nab-paclitaxel effects by inclusion of the small-molecule inhibitor BMS-754807 using both in vitro and in vivo models of EAC. Using multiple EAC cell lines, BMS-754807 and nab-paclitaxel were evaluated as mono and combination therapies for in vitro effects on cell proliferation, cell death, and cell movement. We then analyzed the in vivo anticancer potency with survival improvement with BMS-754807 and nab-paclitaxel mono and combination therapies. BMS-754807 monotherapy suppressed in vitro cell proliferation and wound healing while increasing apoptosis. BMS-754807, when combined with nab-paclitaxel, enhanced those effects on the inhibition of cell proliferation, increment in cell apoptosis, and inhibition of wound healing. BMS-754807 with nab-paclitaxel produced substantially greater antitumor effects by increasing in vivo apoptosis, leading to increased mice survival compared to those of BMS-754807 or nab-paclitaxel monotherapy. Our outcomes support the use of BMS-754807, alone and in combination with nab-paclitaxel, as an efficient and innovative treatment choice for EAC.Item Inhibition of signaling downstream of beta-2 adrenoceptor by propranolol in prostate cancer cells(Wiley, 2023-02) Alaskar, Aljoharah; Abdulraqeb Ali, Amaal; Hassan, Sazzad; Shinwari, Zakia; Alaiya, Ayodele; von Holzen, Urs; Miller, Lance; Kulik, George; Surgery, School of MedicineBackground There is accumulating evidence that propranolol, an antagonist of beta-1 and beta-2 adrenoreceptors, extends survival of patients with prostate cancer; yet it is not known whether propranolol inhibits beta-adrenergic signaling in prostate cancer cells, or systemic effects of propranolol play the leading role in slowing down cancer progression. Recently initiated clinical studies offer a possibility to test whether administration of propranolol inhibits signaling pathways in prostate tumors, however, there is limited information on the dynamics of signaling pathways activated downstream of beta-2 adrenoreceptors in prostate cancer cells and on the inactivation of these pathways upon propranolol administration. Methods Western blot analysis was used to test the effects of epinephrine and propranolol on activation of protein kinase (PKA) signaling in mouse prostates and PKA, extracellular signal-regulated kinase (ERK), and protein kinase B/AKT (AKT) signaling in prostate cancer cell lines. Results In prostate cancer cell lines epinephrine induced robust phosphorylation of PKA substrates pS133CREB and pS157VASP that was evident 2 min after treatments and lasted for 3−6 h. Epinephrine induced phosphorylation of AKT in PTEN-positive 22Rv1 cells, whereas changes of constitutive AKT phosphorylation were minimal in PTEN-negative PC3, C42, and LNCaP cells. A modest short-term increase of pERK in response to epinephrine was observed in all tested cell lines. Incubation of prostate cancer cells with 10-fold molar excess of propranolol for 30 min inhibited all downstream pathways activated by epinephrine. Subjecting mice to immobilization stress induced phosphorylation of S133CREB, whereas injection of propranolol at 1.5 mg/kg prevented the stress-induced phosphorylation. Conclusions The analysis of pS133CREB and pS157VASP allows measuring activation of PKA signaling downstream of beta-2 adrenoreceptors. Presented results on the ratio of propranolol/epinephrine and the time needed to inhibit signaling downstream of beta-2 adrenoreceptors will help to design clinical studies that examine the effects of propranolol on prostate tumors.Item Low Expression of Programmed Death 1 (PD-1), PD-1 Ligand 1 (PD-L1), and Low CD8+ T Lymphocyte Infiltration Identify a Subgroup of Patients With Gastric and Esophageal Adenocarcinoma With Severe Prognosis(Frontiers Media, 2020-04-28) Däste, Silvio; Eppenberger-Castori, Serenella; Mele, Valentina; Schäfer, Hannah M.; Schmid, Lukas; Weixler, Benjamin; Soysal, Savas D.; Droeser, Raoul A.; Spagnoli, Giulio C.; Kettelhack, Christoph; Oertli, Daniel; Terracciano, Luigi; Tornillo, Luigi; von Holzen, Urs; Medicine, School of MedicinePrognosis of gastric and esophageal cancer is poor and treatment improvements are needed. Programmed cell death 1 receptor (PD-1) interaction with its ligand PD-L1 in tumor micro-environment promotes immune tolerance and blocking monoclonal antibodies have entered clinical practice. However, clinical significance of PD-1 and PD-L1 expression in gastric and esophageal adenocarcinomas, particularly in non-Asian patients, is still unclear. Three tissue microarrays including 190 clinically annotated esophageal (n = 31) and gastric (n = 159) adenocarcinomas and 58 paired mucosa specimens, were stained with PD-1, PD-L1, and CD8-specific reagents in indirect immunohistochemistry assays. PD-L1 expression was detectable in 23.2% of cancer specimens. High PD-1 expression was detectable in 37.3% of cases and high CD8+ infiltration in 76%. PD-L1 and high PD1 expression significantly correlated with each other (rs = 0.404, P < 0.0001) and both significantly correlated with CD8+ infiltration (rs = 0.435, P = 0.0003, and rs = 0.444; P = 0.0004, respectively). CD8+ lymphocyte infiltration correlated with improved survival in univariate (P = 0.009), but not multivariate analysis. Most interestingly, multivariate analysis and Kaplan-Meier curves indicate that combined low PD-1/PD-L1 expression and low CD8+ lymphocyte infiltration significantly correlate with poor prognosis. Our data document the clinical significance of a microenvironmental signature including PD-1/PD-L1 expression and CD8+ lymphocyte infiltration in gastric and esophageal adenocarcinomas and contribute to identify a patients' subset requiring more aggressive peri-operative treatments.Item Melatonin and Andrographolide synergize to inhibit the colospheroid phenotype by targeting Wnt/beta-catenin signaling(Wiley, 2022) Sokolov, Daniil; Sharda, Neha; Giri, Banabihari; Hassan, Md Sazzad; Singh, Damandeep; Tarasiewicz, Agnieszka; Lohr, Charity; von Holzen, Urs; Kristian, Tibor; Waddell, Jaylyn; Reiter, Russel J.; Ahmed, Hafiz; Banerjee, Aditi; Surgery, School of Medicineβ-catenin signaling, and angiogenesis are associated with colospheroid (CSC), development. CSCs, spheroids derived from colon cancer cells, are responsible for metastasis, drug resistance, and disease recurrence. Whether dysregulating β-catenin and inhibiting angiogenesis reduces CSC growth is unknown. In this study, the molecular mechanism of CSC growth inhibition was evaluated using a novel combination of melatonin (MLT) and andrographolide (AGP). These drugs have anti-carcinogenic, antioxidant, and anti-metastatic properties. CSCs were obtained from two metastatic colon cancer cell lines (HT29 and HCT-15). The viability and stemness were monitored (FDA PI staining and immunoblot for CD44, CD133, Nanog, Sox2 and Oct4). The drug combination synergistically diminished stemness via increased ROS levels, reduced mitochondrial membrane potential and ATP level. MLT+AGP induced cell death by inhibiting β-catenin expression and its downregulatory signals, Cyclin D1, c-Myc. MLT+AGP treated cells exhibited translocation of phospho-β-catenin to the nucleus and de-phosphorylated-β-catenin. Downregulation of β-catenin activation and its transcription factors (TCF4, LEF1) and GTP binding/G-protein related activity were found in the dual therapy. Angiogenic inhibition is consistent with downregulation of VEGF mRNA transcripts (VEGF189), phosphorylated VEGF receptor protein expression, matrigel invasion, and capillary tube inhibition. In vivo, the intravenous injection of MLT+AGP slowed HT29 metastatic colon cancer. Histopathology indicated significant reduction in microvascular density and tumor index. Immunohistochemistry for caspase 7, and β-catenin found increased apoptosis and downregulation of β-catenin signals. The mechanism(s) of decreased colospheroids growth were the inhibition of the Wnt/β-catenin pathway. Our results provide rationale for using MLT in combination with AGP for inhibition of CRCs.Item Nab-Paclitaxel in the Treatment of Gastrointestinal Cancers—Improvements in Clinical Efficacy and Safety(MDPI, 2023-07-15) Hassan, Md Sazzad; Awasthi, Niranjan; Ponna, Saisantosh; von Holzen, Urs; Surgery, School of MedicineTaxanes (paclitaxel and docetaxel) are one of the most useful classes of anticancer drugs. Taxanes are highly hydrophobic; therefore, these drugs must be dissolved in organic solvents (polysorbate or Cremophor EL), which contribute to their toxicities. To reduce this toxicity and to enhance their efficacy, novel formulations have been developed. Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) is an albumin-stabilized, Cremophor-free, and water-soluble nanoparticle formulation of paclitaxel. Nab-paclitaxel has better solubility and less infusion-associated toxicity compared to solvent-based paclitaxel. Additionally, nab-paclitaxel can be given at higher doses and concentrations compared with solvent-based paclitaxel. Based on its superior clinical efficacy and safety profile, nab-paclitaxel received FDA approval for metastatic breast cancer (2008) and NSCLC (2011). Among gastrointestinal cancers, it is now approved in the USA for treating patients with metastatic adenocarcinoma of the pancreas as first-line therapy in combination with gemcitabine. Furthermore, several clinical trials have suggested the potential efficacy of nab-paclitaxel as a single agent or in combination with other agents for the treatment of metastatic esophageal, gastric, bowel, and biliary tract cancers. Nab-paclitaxel has been demonstrated to have greater overall response rates (ORR) with enhanced progression-free survival (PFS), overall survival (OS) and a superior safety profile with fewer adverse effects in patients with gastrointestinal tract cancers. This review summarizes the advantages associated with nab-paclitaxel-based regimens in terms of improving clinical efficacy and the safety profile in upper gastrointestinal cancer.Item A novel intraperitoneal metastatic xenograft mouse model for survival outcome assessment of esophageal adenocarcinoma(Plos, 2017-02-22) Hassan, Md Sazzad; Awasthi, Niranjan; Li, Jun; Schwarz, Margaret A.; Schwarz, Roderich E.; von Holzen, Urs; Department of Surgery, IU School of MedicineEsophageal adenocarcinoma (EAC) has become the dominant type of esophageal cancer in United States. The 5-year survival rate of EAC is below 20% and most patients present with locally advanced or widespread metastatic disease, where current treatment is largely ineffective. Therefore, new therapeutic approaches are urgently needed. Improvement of EAC patient outcome requires well-characterized animal models in which to evaluate novel therapeutics. In this study we aimed to establish a peritoneal dissemination xenograft mouse model of EAC that would support survival outcome analyses. To find the best candidate cell line from 7 human EAC cell lines of different origin named ESO26, OE33, ESO51, SK-GT-2, OE19, OACM5.1C and Flo-1 were injected intraperitoneally/subcutaneously into SCID mice. The peritoneal/xenograft tumor formation and mouse survival were compared among different groups. All cell lines injected subcutaneously formed tumors within 3 months at variable rates. All cell lines except OACM5.1C formed intraperitoneal tumors within 3 months at variable rates. Median animal survival with peritoneal dissemination was 108 days for ESO26 cells (5X106), 65 days for OE33 cells (5X106), 88 days for ESO51 cells (5X106), 76 days for SK-GT-2 cells (5X106), 55 days for OE19 cells (5X106), 45 days for OE19 cells (10X106) and 82 days for Flo-1 cells (5X106). Interestingly, only in the OE19 model all mice (7/7 for 5X106 and 5/5 for10X106) developed bloody ascites with liver metastasis after intraperitoneal injection. The median survival time of these animals was the shortest (45 days for 10X106 cells). In addition, median survival was significantly increased after paclitaxel treatment compared with the control group (57 days versus 45 days, p = 0.0034) along with a significant decrease of the relative subcutaneous tumor volume (p = 0.00011). Thus peritoneal dissemination mouse xenograft model for survival outcome assessment after intraperitoneal injection of OE19 cells will be very useful for the evaluation of cancer therapeutics.Item Superior Therapeutic Efficacy of Nanoparticle Albumin Bound Paclitaxel Over Cremophor-Bound Paclitaxel in Experimental Esophageal Adenocarcinoma(Elsevier, 2018-04) Hassan, Md Sazzad; Awasthi, Niranjan; Li, Jun; Williams, Fiona; Schwarz, Margaret A.; Schwarz, Roderich E.; von Holzen, Urs; Surgery, School of MedicineEsophageal adenocarcinoma (EAC) is the fastest growing cancer in the western world and the overall 5 year survival rate of EAC is below 20%. Most patients with EAC present with locally advanced or widespread metastatic disease, where current treatment is largely ineffective. Therefore, new therapeutic approaches are urgently needed. Nanoparticle albumin-bound paclitaxel (nab-paclitaxel) is a novel albumin-stabilized, cremophor-free and water soluble nanoparticle formulation of paclitaxel, and the potential role of nab-paclitaxel has not been tested yet in experimental EAC. Here we tested the antiproliferative and antitumor efficacy with survival advantage of nab-paclitaxel as monotherapy and in combinations in in-vitro, and in murine subcutaneous xenograft and peritoneal metastatic survival models of human EAC. Nab-paclitaxel significantly inhibited in-vitro cell proliferation with higher in-vivo antitumour efficacy and survival benefit compared to paclitaxel or carboplatin treatments both in mono- and combination therapies. Nab-paclitaxel treatment increased expression of mitotic-spindle associated phospho-stathmin, decreased expression of proliferative markers and enhanced apoptosis. This study demonstrates that nab-paclitaxel had stronger antiproliferative and antitumor activity in experimental EAC than the current standard chemotherapeutic agents which supports the rationale for its clinical use in EAC.Item Targeted FGFR/VEGFR/PDGFR inhibition with dovitinib enhances the effects of nab-paclitaxel in preclinical gastric cancer models(Taylor & Francis, 2021) Crawford, Kate; Bontrager, Erin; Schwarz, Margaret A.; Chaturvedi, Apurva; Lee, Daniel D.; Sazzad, Hassan Md; von Holzen, Urs; Zhang, Changhua; Schwarz, Roderich E.; Awasthi, Niranjan; Surgery, School of MedicineStandard chemotherapy regimens for gastric adenocarcinoma (GAC) have limited efficacy and considerable toxicity profiles. Nab-paclitaxel has shown promising antitumor benefits in previous GAC preclinical studies. Dovitinib inhibits members of the receptor tyrosine kinase family including FGFR, VEGFR and PDGFR, and has exhibited antitumor effects in many solid tumors including GAC. Based on the antimitotic, antistromal and EPR effects of nab-paclitaxel, we investigated augmentation of nab-paclitaxel response by dovitinib in multiple GAC preclinical models. In MKN-45 subcutaneous xenografts, inhibition in tumor growth by nab-paclitaxel and dovitinib was 75% and 76%, respectively. Dovitinib plus nab-paclitaxel had an additive effect on tumor growth inhibition and resulted in tumor regression (85% of its original value). Dovitinib monotherapy resulted in minimal improvement in animal survival (25 days) compared to control (23 days), while nab-paclitaxel monotherapy or dovitinib plus nab-paclitaxel combination therapy led to a clinically significant lifespan extension of 83% (42 days) and 187% (66 days), respectively. IHC analysis of subcutaneous tumors exhibited reduced tumor cell proliferation and tumor vasculature by dovitinib. In vitro studies demonstrated that dovitinib and nab-paclitaxel individually reduced tumor cell proliferation, with an additive effect from combination therapy. Immunoblot analyses of MKN-45 and KATO-III cells revealed that dovitinib decreased phospho-FGFR, phospho-AKT, phospho-ERK, phospho-p70S6K, phospho-4EBP1, Bcl-2 and increased cleaved PARP-1, cleaved-caspase-3, p27, Bax, Bim, with an additive effect from combination therapy. These results demonstrate that the FGFR/VEGFR/PDGFR inhibitor, dovitinib, has the potential to augment the antitumor effects of nab-paclitaxel, with implications for use in the advancement of clinical GAC therapy.