- Browse by Author
Browsing by Author "von Eyben, Rie"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Abdominal FLASH irradiation reduces radiation-induced gastrointestinal toxicity for the treatment of ovarian cancer in mice(Springer Nature, 2020-12-10) Levy, Karen; Natarajan, Suchitra; Wang, Jinghui; Chow, Stephanie; Eggold, Joshua T.; Loo, Phoebe E.; Manjappa, Rakesh; Melemenidis, Stavros; Lartey, Frederick M.; Schüler, Emil; Skinner, Lawrie; Rafat, Marjan; Ko, Ryan; Kim, Anna; Al-Rawi, Duaa H.; von Eyben, Rie; Dorigo, Oliver; Casey, Kerriann M.; Graves, Edward E.; Bush, Karl; Yu, Amy S.; Koong, Albert C.; Maxim, Peter G.; Loo, Billy W., Jr.; Rankin, Erinn B.; Radiation Oncology, School of MedicineRadiation therapy is the most effective cytotoxic therapy for localized tumors. However, normal tissue toxicity limits the radiation dose and the curative potential of radiation therapy when treating larger target volumes. In particular, the highly radiosensitive intestine limits the use of radiation for patients with intra-abdominal tumors. In metastatic ovarian cancer, total abdominal irradiation (TAI) was used as an effective postsurgical adjuvant therapy in the management of abdominal metastases. However, TAI fell out of favor due to high toxicity of the intestine. Here we utilized an innovative preclinical irradiation platform to compare the safety and efficacy of TAI ultra-high dose rate FLASH irradiation to conventional dose rate (CONV) irradiation in mice. We demonstrate that single high dose TAI-FLASH produced less mortality from gastrointestinal syndrome, spared gut function and epithelial integrity, and spared cell death in crypt base columnar cells compared to TAI-CONV irradiation. Importantly, TAI-FLASH and TAI-CONV irradiation had similar efficacy in reducing tumor burden while improving intestinal function in a preclinical model of ovarian cancer metastasis. These findings suggest that FLASH irradiation may be an effective strategy to enhance the therapeutic index of abdominal radiotherapy, with potential application to metastatic ovarian cancer.Item Evaluating the Reproducibility of Mouse Anatomy under Rotation in a Custom Immobilization Device for Conformal FLASH Radiotherapy(BioOne, 2020-12-01) Ko, Ryan B.; Soto, Luis A.; von Eyben, Rie; Melemenidis, Stavros; Rankin, Erinn B.; Maxim, Peter G.; Graves, Edward E.; Loo, Billy W., Jr.; Radiation Oncology, School of MedicineThe observation of an enhanced therapeutic index for FLASH radiotherapy in mice has created interest in practical laboratory-based FLASH irradiators. To date, systems capable of 3D conformal FLASH irradiation in mice have been lacking. We are developing such a system, incorporating a high-current linear accelerator to produce a collimated X-ray beam in a stationary beamline design, rotating the mouse about a longitudinal axis to achieve conformal irradiation from multiple beam directions. The purpose of this work was to evaluate the reproducibility of mouse anatomy under rotation at speeds compatible with conformal FLASH delivery. Three short-hair mice and two hairless mice were immobilized under anesthesia in body weight-specific contoured plastic molds, and subjected to three rotational (up to 3 revolutions/s) and two non-rotational movement interventions. MicroCT images were acquired before and after each intervention. The displacements of 11 anatomic landmarks were measured on the image pairs. The displacement of the anatomical landmarks with any of the interventions was 0.5 mm or less for 92.4% of measurements, with a single measurement out of 275 (11 landmarks × 5 interventions × 5 mice) reaching 1 mm. There was no significant difference in the displacements associated with rotation compared to those associated with moving the immobilized mouse in and out of a scanner or with leaving the mouse in place for 5 min with no motion. There were no significant differences in displacements between mice with or without hair, although the analysis is limited by small numbers, or between different anatomic landmarks. These results show that anatomic reproducibility under rotation speed corresponding to FLASH irradiation times appears to be compatible with conformal/stereotactic irradiation in mice.Item Impact of Audiovisual-Assisted Therapeutic Ambience in Radiation Therapy (AVATAR) on Anesthesia Use, Payer Charges, and Treatment Time in Pediatric Patients(Elsevier, 2020) Balazy, Katy E.; Gutkin, Paulina M.; Skinner, Lawrie; von Eyben, Rie; Fowler, Tyler; Pinkham, Daniel W.; Rodriguez, Samuel; Maxim, Peter G.; Donaldson, Sarah S.; Loo, Billy W., Jr.; Bush, Karl; Hiniker, Susan M.; Radiation Oncology, School of MedicinePurpose Pediatric radiation therapy (RT) requires optimal immobilization that often necessitates daily anesthesia. To decrease anesthesia use, we implemented a novel audiovisual-assisted therapeutic ambience in RT (AVATAR) system that projects video onto a radiolucent screen within the child’s line of vision to provide attentional diversion. We investigated its reduction on anesthesia use, payer charges, and treatment time, in addition to its impact on radiation delivery. Methods and Materials A 6-year retrospective analysis was performed among children undergoing RT (n = 224) 3 years before and 3 years after the introduction of AVATAR. The frequency of anesthesia use before and after AVATAR implementation, in addition to RT treatment times, were compared. The number of spared anesthesia treatments allowed for a charge to payer analysis. To document the lack of surface dose perturbation by AVATAR, a phantom craniospinal treatment course was delivered both with and without AVATAR. Additionally, an ion chamber course was delivered to document changes to the dose at depth. Results More children were able to avoid anesthesia use entirely in the post-AVATAR cohort compared with the pre-AVATAR cohort (73.2% vs 63.4%; P = .03), and fewer required anesthesia for each treatment (18.8% vs 33%; P = .03). AVATAR introduction reduced anesthesia use for all ages studied. Treatment time per session was reduced by 38% using AVATAR compared with anesthesia. There were 326 fewer anesthesia sessions delivered over 3 years after AVATAR was introduced, with an estimated savings of >$500,000. Optically stimulated luminescent dosimeters revealed a small increase in dose of 0.8% to 9.5% with AVATAR, whereas the use of a thermomolded face mask increased skin dose by as much as 58%. Conclusions AVATAR introduction decreased anesthesia use in children undergoing RT. More children avoided anesthesia entirely, and fewer needed anesthesia for every treatment, resulting in a reduction in treatment time and savings of nearly $550,000 in approximately 3 years, with minimal perturbation of RT dose delivery.