ScholarWorksIndianapolis
  • Communities & Collections
  • Browse ScholarWorks
  • English
  • Català
  • Čeština
  • Deutsch
  • Español
  • Français
  • Gàidhlig
  • Italiano
  • Latviešu
  • Magyar
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Suomi
  • Svenska
  • Türkçe
  • Tiếng Việt
  • Қазақ
  • বাংলা
  • हिंदी
  • Ελληνικά
  • Yкраї́нська
  • Log In
    or
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "van Schaik, Ron H. N."

Now showing 1 - 4 of 4
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Item
    CYP3A4 and CYP3A5 Genotyping Recommendations: A Joint Consensus Recommendation of the Association for Molecular Pathology, Clinical Pharmacogenetics Implementation Consortium, College of American Pathologists, Dutch Pharmacogenetics Working Group of the Royal Dutch Pharmacists Association, European Society for Pharmacogenomics and Personalized Therapy, and Pharmacogenomics Knowledgebase
    (Elsevier, 2023) Pratt, Victoria M.; Cavallari, Larisa H.; Fulmer, Makenzie L.; Gaedigk, Andrea; Hachad, Houda; Ji, Yuan; Kalman, Lisa V.; Ly, Reynold C.; Moyer, Ann M.; Scott, Stuart A.; van Schaik, Ron H. N.; Whirl-Carrillo, Michelle; Weck, Karen E.; Medical and Molecular Genetics, School of Medicine
    The goals of the Association for Molecular Pathology Clinical Practice Committee's Pharmacogenomics (PGx) Working Group are to define the key attributes of pharmacogenetic alleles recommended for clinical testing and a minimum set of variants that should be included in clinical PGx genotyping assays. This document series provides recommendations for a minimum panel of variant alleles (tier 1) and an extended panel of variant alleles (tier 2) that will aid clinical laboratories when designing assays for PGx testing. The Association for Molecular Pathology PGx Working Group considered functional impact of the variant alleles, allele frequencies in multiethnic populations, the availability of reference materials, and other technical considerations for PGx testing when developing these recommendations. The goal of this Working Group is to promote standardization of PGx gene/allele testing across clinical laboratories. This document will focus on clinical CYP3A4 and CYP3A5 PGx testing that may be applied to all CYP3A4- and CYP3A5-related medications. These recommendations are not to be interpreted as prescriptive but to provide a reference guide.
  • Loading...
    Thumbnail Image
    Item
    PharmVar GeneFocus: CYP3A5
    (Wiley, 2022) Rodriguez-Antona, Cristina; Savieo, Jessica L.; Lauschke, Volker M.; Sangkuhl, Katrin; Drögemöller, Britt I.; Wang, Danxin; van Schaik, Ron H. N.; Gilep, Andrei A.; Prakasam Peter, Arul; Boone, Erin C.; Ramey, Bronwyn E.; Klein, Teri E.; Whirl-Carrillo, Michelle; Pratt, Victoria M.; Gaedigk, Andrea; Medicine, School of Medicine
    The Pharmacogene Variation Consortium (PharmVar) catalogs star (*) allele nomenclature for the polymorphic human CYP3A5 gene. Genetic variation within the CYP3A5 gene locus impacts the metabolism of several clinically important drugs, including the immunosuppressants tacrolimus, sirolimus, cyclosporine, and the benzodiazepine midazolam. Variable CYP3A5 activity is of clinical importance regarding tacrolimus metabolism. This GeneFocus provides a CYP3A5 gene summary with a focus on aspects regarding standardized nomenclature. In addition, this review also summarizes recent changes and updates, including the retirement of several allelic variants and provides an overview of how PharmVar CYP3A5 star allele nomenclature is utilized by the Pharmacogenomics Knowledgebase (PharmGKB) and the Clinical Pharmacogenetics Implementation Consortium (CPIC).
  • Loading...
    Thumbnail Image
    Item
    PharmVar GeneFocus: CYP3A5
    (ASCPT, 2022-12) Rodriguez-Antona, Cristina; Savieo, Jessica L.; Lauschke, Volker M.; Sangkuhl, Katrin; Drögemöller, Britt I.; Wang, Danxin; van Schaik, Ron H. N.; Gilep, Andrei A.; Peter, Arul P.; Boone, Erin C.; Ramey, Bronwyn E.; Klein, Teri E.; Whirl-Carrillo, Michelle; Pratt, Victoria M.; Gaedigk, Andrea; Medicine, School of Medicine
    The Pharmacogene Variation Consortium (PharmVar) catalogs star (*) allele nomenclature for the polymorphic human CYP3A5 gene. Genetic variation within the CYP3A5 gene locus impacts the metabolism of several clinically important drugs, including the immunosuppressants tacrolimus, sirolimus, cyclosporine, and the benzodiazepine midazolam. Variable CYP3A5 activity is of clinical importance regarding tacrolimus metabolism. This GeneFocus provides a CYP3A5 gene summary with a focus on aspects regarding standardized nomenclature. In addition, this review also summarizes recent changes and updates including the retirement of several allelic variants and provides an overview of how PharmVar CYP3A5 star allele nomenclature is utilized by the Pharmacogenomics Knowledgebase (PharmGKB) and the Clinical Pharmacogenetics Implementation Consortium (CPIC).
  • Loading...
    Thumbnail Image
    Item
    The Pharmacogenomics Global Research Network Implementation Working Group: global collaboration to advance pharmacogenetic implementation
    (Wolters Kluwer, 2025) Cavallari, Larisa H.; Hicks, J. Kevin; Patel, Jai N.; Elchynski, Amanda L.; Smith, D. Max; Bargal, Salma A.; Fleck, Ashley; Aquilante, Christina L.; Killam, Shayna R.; Lemke, Lauren; Ochi, Taichi; Ramsey, Laura B.; Haidar, Cyrine E.; Ho, Teresa; El Rouby, Nihal; Monte, Andrew A.; Allen, Josiah D.; Beitelshees, Amber L.; Bishop, Jeffrey R.; Bousman, Chad; Campbell, Ronald; Cicali, Emily J.; Cook, Kelsey J.; Duong, Benjamin; Tsermpini, Evangelia Eirini; Girdwood, Sonya Tang; Gregornik, David B.; Grimsrud, Kristin N.; Lamb, Nathan; Lee, James C.; Lopez, Rocio Ortiz; Mazhindu, Tinashe Adrian; Morris, Sarah A.; Nagy, Mohamed; Nguyen, Jenny; Pasternak, Amy L.; Petry, Natasha; van Schaik, Ron H. N.; Schultz, April; Skaar, Todd C.; Al Alshaykh, Hana; Stevenson, James M.; Stone, Rachael M.; Tran, Nam K.; Tuteja, Sony; Woodahl, Erica L.; Yuan, Li-Chi; Lee, Craig R.; Medicine, School of Medicine
    Pharmacogenetics promises to optimize treatment-related outcomes by informing optimal drug selection and dosing based on an individual's genotype in conjunction with other important clinical factors. Despite significant evidence of genetic associations with drug response, pharmacogenetic testing has not been widely implemented into clinical practice. Among the barriers to broad implementation are limited guidance for how to successfully integrate testing into clinical workflows and limited data on outcomes with pharmacogenetic implementation in clinical practice. The Pharmacogenomics Global Research Network Implementation Working Group seeks to engage institutions globally that have implemented pharmacogenetic testing into clinical practice or are in the process or planning stages of implementing testing to collectively disseminate data on implementation strategies, metrics, and health-related outcomes with the use of genotype-guided drug therapy to ultimately help advance pharmacogenetic implementation. This paper describes the goals, structure, and initial projects of the group in addition to implementation priorities across sites and future collaborative opportunities.
About IU Indianapolis ScholarWorks
  • Accessibility
  • Privacy Notice
  • Copyright © 2025 The Trustees of Indiana University