- Browse by Author
Browsing by Author "van Minkelen, Rick"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Correction: Expanding the clinical phenotype of individuals with a 3-bp in-frame deletion of the NF1 gene (c.2970_2972del): an update of genotype–phenotype correlation(Elsevier, 2019-03) Koczkowska, Magdalena; Callens, Tom; Gomes, Alicia; Sharp, Angela; Chen, Yunjia; Hicks, Alesha D.; Aylsworth, Arthur S.; Azizi, Amedeo A.; Basel, Donald G.; Bellus, Gary; Bird, Lynne M.; Blazo, Maria A.; Burke, Leah W.; Cannon, Ashley; Collins, Felicity; DeFilippo, Colette; Denayer, Ellen; Digilio, Maria C.; Dills, Shelley K.; Dosa, Laura; Greenwood, Robert S.; Griffis, Cristin; Gupta, Punita; Hachen, Rachel K.; Hernández-Chico, Concepción; Janssens, Sandra; Jones, Kristi J.; Jordan, Justin T.; Kannu, Peter; Korf, Bruce R.; Lewis, Andrea M.; Listernick, Robert H.; Lonardo, Fortunato; Mahoney, Maurice J.; Ojeda, Mayra Martinez; McDonald, Marie T.; McDougall, Carey; Mendelsohn, Nancy; Miller, David T.; Mori, Mari; Oostenbrink, Rianne; Perreault, Sebastién; Pierpont, Mary Ella; Piscopo, Carmelo; Pond, Dinel A.; Randolph, Linda M.; Rauen, Katherine A.; Rednam, Surya; Rutledge, S. Lane; Saletti, Veronica; Schaefer, G. Bradley; Schorry, Elizabeth K.; Scott, Daryl A.; Shugar, Andrea; Siqveland, Elizabeth; Starr, Lois J.; Syed, Ashraf; Trapane, Pamela L.; Ullrich, Nicole J.; Wakefield, Emily G.; Walsh, Laurence E.; Wangler, Michael F.; Zackai, Elaine; Claes, Kathleen B.M.; Wimmer, Katharina; van Minkelen, Rick; De Luca, Alessandro; Martin, Yolanda; Legius, Eric; Messiaen, Ludwine M.; Neurology, School of MedicinePurpose: Neurofibromatosis type 1 (NF1) is characterized by a highly variable clinical presentation, but almost all NF1-affected adults present with cutaneous and/or subcutaneous neurofibromas. Exceptions are individuals heterozygous for the NF1 in-frame deletion, c.2970_2972del (p.Met992del), associated with a mild phenotype without any externally visible tumors. Methods: A total of 135 individuals from 103 unrelated families, all carrying the constitutional NF1 p.Met992del pathogenic variant and clinically assessed using the same standardized phenotypic checklist form, were included in this study. Results: None of the individuals had externally visible plexiform or histopathologically confirmed cutaneous or subcutaneous neurofi- bromas. We did not identify any complications, such as sympto-matic optic pathway gliomas (OPGs) or symptomatic spinal neurofibromas; however, 4.8% of individuals had nonoptic brain tumors, mostly low-grade and asymptomatic, and 38.8% had cognitive impairment/learning disabilities. In an individual with the NF1 constitutional c.2970_2972del and three astrocytomas, we provided proof that all were NF1-associated tumors given loss of heterozygosity at three intragenic NF1 microsatellite markers and c.2970_2972del. Conclusion: We demonstrate that individuals with the NF1 p.Met992del pathogenic variant have a mild NF1 phenotype lacking clinically suspected plexiform, cutaneous, or subcutaneous neurofi-bromas. However, learning difficulties are clearly part of the phenotypic presentation in these individuals and will require specialized care.Item Expanding the clinical phenotype of individuals with a 3-bp in-frame deletion of the NF1 gene (c.2970_2972del): an update of genotype-phenotype correlation(Springer Nature, 2019-04) Koczkowska, Magdalena; Callens, Tom; Gomes, Alicia; Sharp, Angela; Chen, Yunjia; Hicks, Alesha D.; Aylsworth, Arthur S.; Azizi, Amedeo A.; Basel, Donald G.; Bellus, Gary; Bird, Lynne M.; Blazo, Maria A.; Burke, Leah W.; Cannon, Ashley; Collins, Felicity; DeFilippo, Colette; Denayer, Ellen; Digilio, Maria C.; Dills, Shelley K.; Dosa, Laura; Greenwood, Robert S.; Griffis, Cristin; Gupta, Punita; Hachen, Rachel K.; Hernández-Chico, Concepción; Janssens, Sandra; Jones, Kristi J.; Jordan, Justin T.; Kannu, Peter; Korf, Bruce R.; Lewis, Andrea M.; Listernick, Robert H.; Lonardo, Fortunato; Mahoney, Maurice J.; Ojeda, Mayra Martinez; McDonald, Marie T.; McDougall, Carey; Mendelsohn, Nancy; Miller, David T.; Mori, Mari; Oostenbrink, Rianne; Perreault, Sebastién; Pierpont, Mary Ella; Piscopo, Carmelo; Pond, Dinel A.; Randolph, Linda M.; Rauen, Katherine A.; Rednam, Surya; Rutledge, S. Lane; Saletti, Veronica; Schaefer, G. Bradley; Schorry, Elizabeth K.; Scott, Daryl A.; Shugar, Andrea; Siqveland, Elizabeth; Starr, Lois J.; Syed, Ashraf; Trapane, Pamela L.; Ullrich, Nicole J.; Wakefield, Emily G.; Walsh, Laurence E.; Wangler, Michael F.; Zackai, Elaine; Claes, Kathleen B. M.; Wimmer, Katharina; van Minkelen, Rick; De Luca, Alessandro; Martin, Yolanda; Legius, Eric; Messiaen, Ludwine M.; Neurology, School of MedicinePURPOSE: Neurofibromatosis type 1 (NF1) is characterized by a highly variable clinical presentation, but almost all NF1-affected adults present with cutaneous and/or subcutaneous neurofibromas. Exceptions are individuals heterozygous for the NF1 in-frame deletion, c.2970_2972del (p.Met992del), associated with a mild phenotype without any externally visible tumors. METHODS: A total of 135 individuals from 103 unrelated families, all carrying the constitutional NF1 p.Met992del pathogenic variant and clinically assessed using the same standardized phenotypic checklist form, were included in this study. RESULTS: None of the individuals had externally visible plexiform or histopathologically confirmed cutaneous or subcutaneous neurofibromas. We did not identify any complications, such as symptomatic optic pathway gliomas (OPGs) or symptomatic spinal neurofibromas; however, 4.8% of individuals had nonoptic brain tumors, mostly low-grade and asymptomatic, and 38.8% had cognitive impairment/learning disabilities. In an individual with the NF1 constitutional c.2970_2972del and three astrocytomas, we provided proof that all were NF1-associated tumors given loss of heterozygosity at three intragenic NF1 microsatellite markers and c.2970_2972del. CONCLUSION: We demonstrate that individuals with the NF1 p.Met992del pathogenic variant have a mild NF1 phenotype lacking clinically suspected plexiform, cutaneous, or subcutaneous neurofibromas. However, learning difficulties are clearly part of the phenotypic presentation in these individuals and will require specialized care.Item A new alpha-synuclein missense variant (Thr72Met) in two Turkish families with Parkinson's disease(Elsevier, 2021-08) Fevga, Christina; Park, Yangshin; Lohmann, Ebba; Kievit, Anneke J.; Breedveld, Guido J.; Ferraro, Federico; de Boer, Leon; van Minkelen, Rick; Hanagasi, Hasmet; Boon, Agnita; Wang, Wei; Petsko, Gregory A.; Hoang, Quyen Q.; Emre, Murat; Bonifati, Vincenzo; Biochemistry and Molecular Biology, School of MedicineIntroduction: Missense variants and multiplications of the alpha-synuclein gene (SNCA) are established as rare causes of autosomal dominant forms of Parkinson's Disease (PD). Methods: Two families of Turkish origins with PD were studied; the SNCA coding region was analyzed by Sanger sequencing, and by whole exome sequencing (WES) in the index patient of the first and the second family, respectively. Co-segregation studies and haplotype analysis across the SNCA locus were carried out. Functional studies included in vitro thioflavin-T aggregation assay and in silico structural modelling of the alpha-synuclein (α-syn) protein. Results: We identified a novel heterozygous SNCA variant, c.215C > T (p.Thr72Met), segregating with PD in a total of four members in the two families. A shared haplotype across the SNCA locus was found among variant carriers, suggestive of a common ancestor. We next showed that the Thr72Met α-syn displays enhanced aggregation in-vitro, compared to the wild-type species. In silico analysis of a tetrameric α-syn structural model revealed that Threonine 72 lies in the tetrameric interface, and substitution with the much larger methionine residue could potentially destabilize the tetramer. Conclusion: We present clinical, genetic, and functional data supporting a causative role of the SNCA c.215C > T (p.Thr72Met) variant in familial PD. Testing for this variant in patients with PD, especially of Turkish origin, might detect additional carriers. Further functional analyses might offer new insights into the shared biochemical properties of the PD-causing SNCA missense variants, and how they lead to neurodegeneration.